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ABSTRACT

Numerical investigations on a diffusing S-duct with/without

vortex generators and a straight duct with vortex generators are

presented. The investigation consists of solving the full

three-dimensional unsteady compressible mass averaged

Navier-Stokes equations. An implicit finite volume lower-upper

time marching code (RPLUS3D) has been employed and modified. A

three-dimensional Baldwin-Lomax turbulence model has been

modified in conjunction with the flow physics.

A model for the analysis of vortex generators in a fully

viscous subsonic internal flow is evaluated. A vortical

structure for modelling the shed vortex is used as a source term

in the computation domain. The injected vortex paths in the

straight duct are compared with the analysis by two kinds of

prediction models. The flow structure by the vortex generators

are investigated along the duct.

ii



Computed results of the flow in a circular diffusing S-duct

provide an understanding of the flow structure within a typical

engine inlet system. These are compared with the experimental

wall static-pressure, static- and total-pressure field, and

secondary velocity profiles. Additionally, boundary layer

thickness, skin friction values, and velocity profiles in wall

coordinates are presented. In order to investigate the effect of

vortex generators, various vortex strengths are examined in this

study. The total-pressure recovery and distortion coefficients

are obtained at the exit of the S-duct. The numerical results

clearly depict the interaction between the low velocity flow by

the flow separation and the injected vortices.
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CHAPTER1

INTRODUCTION AND BACKGROUND

I.I S-duct Without Vortex Generators

The subsonic duct is a feature of the air intake

propulsion systems for modern aircraft whether the speed of

the aircraft is subsonic or supersonic. Depending on the

integration of the engine inlet with the airframe, various

shaped ducts are employed. The intention of duct design is

to produce high pressure recovery in order to maintain high

thrust levels, and low flow distortion consistent with

stable engine operation. It is common to design ducts to be

as short as possible because of size and weight

restrictions. Many aircraft employ curved rectangular, or

circular shaped ducts with constant or varying cross-

sectional area in the engine intake systems. For example,

the Boeing 727, Lockhead Tristar(L-1011), General dynamics

F-16, and McDonnell-Douglas F-18, etc., use the S-shaped

duct in their engine intake systems. Usually, the

diffusing duct is employed in the inlet of the propulsion

system of the aircraft in order to decelerate the flow and

achieve high pressure recovery at the engine compressor.

The S-shaped duct produces complex cross flow patterns

and nonuniform velocity profiles at the exit because of its

1
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curvature and centerline offset. These deteriorate the

performance of the engine inlet system. The nonuniform flow

at the exit results from the expulsion of low velocity

fluid by a pair of counter-rotating vortices, which are

produced near the inflection point of the duct and

stretched toward the exit.

The experimental results obtained by Bansod and

Bradshaw(1972) show the expulsion of low velocity fluid at

the exit. The authors conducted experiments using three

different kinds of constant-area S-shaped ducts in

incompressible flow. The S-shaped ducts were assembled with

different radii of curvature(R) of the duct centerline. One

had the same R/D = 2.25 in the first and second half bend.

Others had R/D = 2.25 or R/D = 3.5 in the first and second

half bend, respectively. The S-shaped duct with large

radius in the second half bend was more efficient because

the thick boundary layer in the second half bend was less

rapidly deflected.

McMillan(1982) conducted experiments using a 40 °

curved rectangular diffusing duct. The flow was

incompressible. The results show a pair of counter-rotating

vortices at the exit. The secondary velocity profiles show

that the high velocity fluid at the central portion of the

channel moves toward the concave wall, driven by

centrifugal force. Correspondingly, the low velocity fluid
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in the boundary layers moves toward the convex wall. The

mean velocity in the diffusing duct is dominated by this

secondary flow.

Guo and Seddon(1982) tested a S-shaped rectangular

duct of constant cross-sectional area with several

different angles of attack. The results show that the flow

separation, turbulent intensity, and flow distortion at the

exit increase with increasing the angle of attack.

Vakili et ai.(1987) tested a diffusing 30o-30 ° S-duct

with circular cross section. The duct area ratio between

inlet and exit was 1.51. The offset of the duct resulting

from the centerline curvature was 1.34 times the inlet

diameter. Two straight circular pipes were attached

upstream and downstream of the S-duct to provide the

desired boundary layer thickness flow at the inlet of S-

duct and minimize the exit flow effect. The entrance Mach

number was 0.6 and the Reynolds number based on the inlet

diameter was 1.76xi06. The secondary velocity profiles,

static- and total-pressure contours, and surface static-

pressure were measured at the several streamwise locations.

The experimental results show that a pair of counter-

rotating vortices created by the flow separation cause the

flow distortion at the exit of the S-duct.

Jenkins and Loeffler(1991) conducted experiments on a
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compact diffusing S-duct. The offset of the duct centerline

was 1.5 times inlet diameter. The duct area ratio between

inlet and exit was 2.25. The entrance Mach number and

Reynolds number were 0.34 and 5.75xi05, respectively. The

authors measured the secondary velocity profiles,

streamwise velocity contours, and surface static-pressure.

The results were similar to the experimental results

obtained by Vakili et ai.(1987).

Wellborn et ai.(1992) conducted experiments on a

diffusing S-duct, which was larger than, but geometrically

similar to the duct studied by Vakili et ai.(1987). The

duct inlet Mach number was 0.6 and the Reynolds number

based on inlet diameter was 2.6xi06. Two straight pipes of

3.75 times inlet diameter were attached upstream and

downstream of the S-duct to provide a uniform inflow and

minimize the exit flow effect. The authors measured the

surface static-pressure along the streamwise and

circumferential direction. Streamlines near the wall,

observed by oil flow visualization, showed the formation of

the counter-rotating vortices in the flow separation

region. The results showed that the flow at the exit was

strongly affected by these vortices, and the mean velocity

profiles were very similar to the total-pressure field.

Early numerical work on the curved pipe is shown in
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Rowe(1970)'s work. The author computed the secondary flow

on a 45o-45 ° S-shaped and a 180 ° pipe by the step by step

application of the Squire and Winter's(1951) inviscid

secondary flow theory. The computation based on the

inviscid theory predicts roughly the flow pattern in a

curved pipe, if the mean flow does not have large local

variations associated with the secondary flow.

Pratrap and Patankar(1975) calculated mean velocity

and secondary flow in a 90 ° curved constant-area

rectangular duct for incompressible flow. The authors used

the fully parabolized Navier-Stokes(PNS) equations and

partially PNS equations, with a k-_ turbulence model. The

partially PNS equations for subsonic flow are obtained from

the full Navier-Stokes(FNS) equations by assuming that the

streamwise viscous diffusion terms are negiigible compared

to the normal and transverse viscous diffusion terms. The

fully PNS equations have one more restriction, that the

pressure in the streamwise momentum equation is assumed to

vary only in the streamwise direction. More detail

information about PNS equations is described by Anderson et

ai.(1984). The computational results show that predictions

using the partially PNS equations are more accurate than

those using the fully PNS equations.

Levy et ai.(1980) conducted computations in a

constant-area S-shaped duct using PNS equations. The offset
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and length of the duct was one and five times the inlet

diameter, respectively. The inflow Mach number was 0.2. The

results show that the total-pressure contours at the region

of near the bottom wall are almost the same shape as the

streamwise velocity contours. More detailed results of the

total-pressure contours and secondary velocity profiles

were obtained by Towne and Anderson(1981). The authors also

conducted a numerical study with a PNS computer program

with an algebraic turbulence model. The flow was laminar

with an entrance Mach number of 0.2 and a Reynolds number

based on duct diameter of 2000.

Levy et al. (1983) analyzed a 22.5°-22.5 ° S-shaped duct

in laminar and turbulent flow at Reynolds numbers of 790

and 4.8x104, respectively, using a PNS computer code with an

algebraic turbulence model. The streamwise velocity

contours agreed well with the experimental data. The

analysis shows that the streamwise velocity in turbulent

flow is similar to the laminar flow field, but the

streamwise velocity distortion in the turbulent flow is

less than that in the laminar flow.

Vakili et ai.(1983,1984) performed numerical analysis

and experiments on a 30°-30 ° non-diffusing S-duct. The

inlet Mach number was 0.6 and the Reynolds number was

1.76xi06. The PNS computer code was used to predict the
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static- and total-pressure contours and secondary veloc_t_ _

profiles. The computational results showed that the

secondary velocity profiles agreed well with th_

experimental results. The extent of the flow distortion was

underestimated due to simplifications made in the pressure

field calculations. The pressure in the streamwise

direction was used a sum of the pressure obtained from

three-dimensional potential flow analysis and one--

dimensional correction. Harloff et al.(1992a) used the

three-dimensional FNS equations to analyze the 30o-30 °

nondiffusing S-duct, which had the same geometry and flow

conditions tested by Vakili et a1.(1984). The authors used

two kinds of grid, H- and O-grid. An H-grid conforms well

to the rectangular shape. An O-grid, which has a pole

boundary condition at the center of the grid, conforms well

to a circular cross-section. The results obtained using the

O-grid were better than those by H-grid because the H-grid

had a large amount of grid skewness in the corner region.

The authors concluded that the computational results were

in qualitative agreement with the experimental results, and

more advanced turbulence model and grid refinement could

improve the agreement with the experimental results.

Jenkins and Loeffler(1991) conducted computations on

a compact diffusing S-duct, and compared their results with

experimental data. Results were obtained using the Baldwin-
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Lomax and "one-half" equation turbulence model which

accounts for some of the history effects in computing the

turbulence length scale. The results showed that the thin

layer Navier-Stokes equations code provided a reasonably

good representation of the flow at the exit, but the code

could not accurately predict the separated flow region.

Harloff et al.(1992b) conducted a numerical study in

the diffusing 30o-30 ° S-duct using the three-dimensional

FNS equations. The authors used the algebraic and k-_

turbulence model. The wall static-pressure distribution and

total-pressure profiles calculated with the k-_ turbulence

model were better than those with the algebraic turbulence

model. However, the computational results showed that both

turbulence models could not adequately account for strong

secondary flows with flow separation.

1.2 S-duct With Vortex Generators

From the review of the S-shaped duct without vortex

generators, one sees that the strong secondary flow due to

adverse pressure gradient may have deteriorating effects on

the performance of the engine inlet system. To alleviate

this problem, a vortex generator can be used as a flow

control device because it can transport energy into the

boundary layer from the outer flow. The vortex generator
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has been used mainly for the prevention of separation on

wings, diffusers, or bends, or at least for decreasing the

extent of separated region. There are many kinds of vortex

generators, such as simple plow, shielded plow, triangular

plow, scoop, twist interchanger, ramp, tapered fin, dome,

shieled sink, etc.,. Schubauer and Spangenberg(1960)

experimentally investigated the mixing rate of the

turbulent boundary layers with many different vortex

generators in a region of adverse pressure gradient. Most

vortex generators in use today are small wing sections,

which are mounted upstream of the problem flow area. The

vortex generators are inclined to the oncoming flow to

generate shed vortices. The vortex generators are usually

sized to local boundary layer height to obtain the best

interaction between the shed vortex and the boundary layer.

The vortex generators are usually placed in groups of two

or more upstream of the problem flow area. Fig. I.I shows

a wing type vortex generator.

Boundary layer control by vortex generators relies on

induced mixing between the external or core stream and the

low energy flow region. The mixing is promoted by

longitudinally trailing vortices over the duct surface

adjacent to the edge of the boundary layer. Fluid particles

with high momentum in the streamwise direction are swept

along helical paths toward the duct surface to mix with
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and, to some extent, replace the low momentum boundary

layer flow. This is a continuous process that provides a

source of re-energization to counter the natural boundary

layer growth caused by surface friction, adverse pressure

gradients, and low energy secondary flow accumulation.

There are two basic configurations. In one

configuration, all of the vortex generators are inclined at

the same angle with respect to the oncoming flow direction,

as shown in Fig. 1.2(a). These are called co-rotating

configurations because the shed vortices rotate in the same

direction. In the other configuration, the vortex

generators are grouped in pairs inclined in the opposite

direction to the oncoming flow, as shown in Fig 1.2(b).

These are termed the counter-rotating configurations

because the shed vortices in pairs rotate in opposite

directions to each other.

What kind of configuration is chosen depends on the

location of the flow separation for a given geometry. Co-

rotating vortex generators are very competitive with

counter-rotating vortices in reducing the flow separation

if the generators are properly selected and located. This

type of vortex generator has the following characteristics

when it is used within the duct. (I) Two induced vortices

move along the duct surface, (2) the first vortex moves

away from the duct surface, (3) the other vortex remains
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close to the duct surface, and (4) the distance between

them decreases because they counteract each other.

Counter-rotating vortex generators are very effective

in reducing the flow separation if the vortex generators

are placed slightly upstream of the region of separation.

If the induced vortices are rotating away from each other,

the induced secondary flow between two vortex generators

moves toward the center of the duct. The vortices are

attracted to each other for a short time, and then they

proceed to march away from the wall. Since the two vortices

are moving toward the center of the duct, the duct surface

is not much affected by the induced vortices. If the

induced vortices are rotating toward each other, the

induced secondary flow between two vortex generators moves

toward the duct surface. Two vortices move away from each

other, but they remain close to the duct surface because

the induced secondary velocities push each other toward the

surface. The induced vortex strength is dissipated

significantly as it moves downstream due to viscous

diffusion.

Early studies with vortex generators have focused on

improving the diffuser performance. Brown et ai.(1968)

conducted experiments with pairs of vane type vortex

generators in a short diffuser. The results show that high

pressure recovery and flow uniformity can be achieved by
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the vortex generators, but the incorrect arrangement of

vortex generators can lead to significance performance

losses.

Vakili et ai.(1986) experimentally investigated the

performance of the vortex generators in a diffusing 30o-30 °

S-shaped duct with circular cross-section. The entrance

Mach number was 0.6 and the Reynolds number based on the

diameter was 1.76xi06. To eliminate the total-pressure

distortion at the exit and flow separation in the duct, arc

wing type, rail type and vane type vortex generators were

installed at the upstream of the separation region. Using

a flow control device, the flow distortion at the exit was

significantly improved. The results showed that the flow

field at the exit depended on the types of vortex

generators.

Reichert and Wendt(1992) conducted experiments to

examine three parameters of vortex generators array, i.e.,

the height of vortex generator, the location of the vortex

generators array, and the vortex generators spacing. The

test was performed on the same geometry and flow conditions

as studied by Wellborn et ai.(1992). The Wheeler wishbone

generators, which produced a pair of counter-rotating

vortices, were used. The results show that the efficiency

of vortex generators is much dependent on the parameters of
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vortex generators.

A numerical study of a fully viscous subsonic internal

flow with vortex generators was reported by Kunik(1986).

The shed vortex is modeled by introducing a vorticity

source term into a modified form of the PNS equations. That

vortex model resembles the one proposed by Squire(1965)

except that it neglects the variation of viscosity in the

cross plane. Quantitative comparisons with the experimental

data by Vakili et al. (1986) show that the vortex model can

predict the global flow field in the S-duct.

Anderson(1991) conducted the analysis of the flow

physics associated with vortex injection in the S-shaped

duct and F/A-18 inlet duct. The author used the PNS

equations with the algebraic turbulence model. Predicted

total-pressure profiles were in good agreement with

experiment results, but the transverse velocities at the

exit were overestimated.

The PNS equations were derived from the FNS equations

using a series expansion technique. These equations can be

solved using a space-marching technique because the

streamwise diffusion term in the FNS equations is neglected

and a pressure in the streamwise momentum equation is

assumed to vary only in the streamwise direction for

subsonic flow. Naturally, a substantial reduction in

computation time and storage is achieved, but the space
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marching method is not well posed if the streamwise

pressure gradient is included everywhere in the flow field.

If the streamwise velocity deficit in the vortex core is

quickly recovered along the duct, the role of the

streamwise diffusion term in the FNS equations is

important. In that case, the FNS equations should be

solved.
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(a) Top view

U 51_ed \oL'te×

(b) Side view

Fig. 1.1 A typical vortex generator.
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(a) Co-rotating.

(b) Counter-rotating.

Fig. 1.2 Typical vortex generator configurations.



CHAPTER2

GOVERNINGEQUATIONS AND BOUNDARY CONDITIONS

From the reviews of the S-duct without vortex

generators, we can conclude that computational fluid

dynamics(CFD) studies have generally used the PNS computer

code to predict the flow fields in the curved ducts, and

simple turbulence modelling without modifications cannot

predict correctly the flow fields which have strong

secondary flows with flow separation. The PNS solutions

usually rely on an input inviscid static-pressure field,

which is generally from an Euler or potential analysis. In

the present study, the three-dimensional FNS equations with

a modified algebraic turbulence model are solved to predict

the flow fields in the diffusing 30o-30 ° S-duct. The inlet

Mach number is 0.6 and the Reynolds number based on the

inlet diameter is 1.76x106. Several aspects of the flow

fields are examined. The computed static- and total-

pressure fields, secondary velocity profiles and boundary

thickness are compared with experimental results obtained

by Vakili et al. (1986,1987) and Wellborn et ai.(1992) for

CFD validation. Additionally, skin friction values and

velocity profiles in wall coordinates are investigated.

From the reviews of the S-duct with vortex generators,

17
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we know that most of predictions of flow fields with vortex

generators are conducted using PNS equations. In order to

apply space-marching method of PNS equations, the vortical

structures, modelled from the shed vortex, are set up at

the inlet plane of a computational domain with the

approximately calculated inlet flow conditions. In contrast

to the previously published work, a new vortex model is

developed and it is applied inside the computational domain

like a source term. The inlet boundary conditions are not

affected by the added vortical structures. Numerical

analysis is conducted using the three-dimensional FNS

equations, with an algebraic turbulence model, because FNS

equations are able to deal with the streamwise diffusion

terms, which are important in the region of the shed vortex

core. In order to confirm the developed vortex model, four-

different types of vortex generators are examined in a

straight duct. In the straight duct computations, the inlet

Mach number is 0.6 and the Reynolds number based on the

diameter is 1.0xl06. The computational results are compared

with the analytic results obtained by the two prediction

models.

In order to investigate the flow structure in the

diffusing 30o-30 ° S-duct with vortex generators, the above

mentioned vortex model is applied inside the computational
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domain. The three-dimensional FNS equations with a modified

algebraic turbulence model are solved. The inlet Mach

number is 0.6 and the Reynolds number based on the inlet

diameter is 1.76xi06. The interaction between the injected

vortices and separated flow is investigated. The static-

and total-pressure fields and secondary velocity profiles

are compared with the experimental results obtained by

Vakili et ai.(1986). In order to investigate the effects of

the injected vortices, the computed results are compared

with those without vortex generators, and the total-

pressure recovery and distortion coefficients are

investigated at the exit of S-duct.

2.1 Governinq Equations

The three-dimensional and compressible Navier-Stokes

equations in Cartesian coordinates without body forces are

written in a conservation form as follows:

aU @(E-E v) @(F-F v) a(G-G v) (2.1]
-- + _ + " =0

a¢ ax ay az

U is the independent variable, E, F and G are the

convective flux vectors



2O

(2.2)

E

pu

pu2+p

puv

puw

u ( p e+p)

(2.3)

f

pv

puv

p v 2 *p

pvw

v( p e+p)

(2.4)

U ._

pw

puw

p_

pw2_p

w(pe÷p)

(2.s)

E,, F, and G, are the viscous flux vectors:
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0

Txx

_xy

"C xz

LZT _uc + TV_ x,/ + WT"xz - qx

(2.6)

FV "_

0

Tyx

Tyy

Tyz

UT y x "P VT yy + WT. y z - qy

(z .7)

G V

0

T zx

T zy

Tzz

Ur zx + "V'_ Zy + WT zz - qz

(2.8)

The first row of the vector Eq. (2.1) corresponds to

the continuity equation, the second, third and fourth rows

are the momentum equations, the fifth row is the energy

equation; e in the energy equation is the summation of

internal energy and kinetic energy per unit mass. The shear

Stokes

au 2 (au 0v aw)

and normal stresses can be expressed using

hypothesis, i.e., the second viscous factor k=-2_/3
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av 2 ( au"__" = 21_ ay 3 _ a-_
+ a_._v+ a.._.wt

ay az !

aw 2 ( au_ zz = 21 .L a z 3 I1 a-_
+ a..__v+ a__.w_

ay az t

au + aw)-c,,, = _x,, = _ a-_ a---_
(2.9)

av + aw )

au + av )

In the energy equation, heat flux q,, qy and qz are

expressed as;

qy = -k a__.T (2.10)
ay

To close this system, the state equation with an

assumption of a perfect gas is employed.

p = pRT (2.11)

The viscosity, heat conductivity coefficients and
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specific heats of air are evaluated using fifth order

polynomials in temperature, using properties presented in

the National Bureau of Standards tables(1955).

For turbulent flow, it is convenient to use a

conservation form of the mass-averaged Navier-Stokes

equation. This form takes all turbulence effects into

account by adding the eddy viscosity to the equations.

These equations can be obtained by replacing the molecular

coefficient of viscosity _ with # + #_ and also the

coefficient of thermal conductivity k with k + k,. _t is the

eddy viscosity and k t is the turbulent thermal conductivity.

The turbulent thermal conductivity can be expressed in

terms of the eddy viscosity and turbulent Prandtl number

Prt, i.e., k, = c_,/Pr,. In the present study, the turbulent

Prandtl number is assigned Pr, = 0.9 for air, and the eddy

viscosity will be discussed in the section on turbulence

model.

2.2 Coordinate Transformation

The computation of flow-fields in and around complex

shapes such as ducts, engine intakes or aircraft, etc.,

involves computational boundaries that do not coincide with
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coordinate lines in physical space. For numerical methods,

the imposition of boundary conditions for such problems has

required a complicated interpolation of the data on local

grid lines, and typically a local loss of accuracy in the

computational solution. Such difficulties motivate the

introduction of a mapping or transformation from physical

(x, y, z) space to a generalized curvilinear coordinates

(_, 7, _) space. The generalized coordinate domain is

constructed so that a computational boundary in physical

space coincides with a coordinate line in generalized

coordinate space. It makes it possible to solve the

governing equations on an uniformly spaced computational

grid. In order to use an uniform grid, consider a general

transformation of the governing equations.

= _ (x,y,z)

= _ (x,y, z) (2.12)

C = C (x,y, z)

Using the chain rule of partial differentiation,

the partial derivatives become
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ax

a - _y + ny._q + ¢y (2.13)ay

÷ _-" a--q

The Jacobians of the coordinate transformation are as

follows:

J = det

x{ x n x,

Y{ Y,, Y¢

z_ z,_ z_

(2.14)

The vector Eq. (2.1) can be written in terms of a

generalized nonorthogonal curvilinear system (_, 7, _)

using the change rule of partial differentiation and the

Jacobian of the transformation. The resulting equations can

be written:

az_ a(f-,_,,) a(,f- __,,) a(_-_,,)
-- + "* + - 0 (2.15)
ac a_ at/ a¢
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=

pJ

pJu

pJv

pJw

pJe

(2.16)

pj( U{x+ v_y+ w{z)

pJw (u_+ v_y+ w_) + pJ_=

(pe+p) j( U_x+ V[y+w_ z)

(2.17)

pJ( uT]x+v'qy+w'q.")

pJ'u (UTI_+v'qy+w'q,) +pJ'q_

pJ'v( u'q_+v'qy+w'q_) +pJ'qy

pJ'w( u'qx+v'qy+ w'q_) +pJ'q=

(pe+p) J( u'qx÷v'qy÷w'qz)

(2.18)

pJ( u(x+ v(z* w_z)

pJu (u_x+ v_z+w_ z) + PJ_x

pJv ( u_x+ v(y+ w(=) + pJ_ z

pJw (uCx+ vCy+ w_=) + PJCz

(pe+p) J( u(x+ V(y÷ W_z)

(2.19)
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Zv

' ev 1

ev2

= ev3

ev4

evs

0

rxxJ_x + rxyJ_y + _x_-T_z

rxTJ_x + ryyJ_y + ryzJ_ z

_xzJ_x + ryzJ_y + rz= J_ z

Uev2 +Vev3 +Wev4 + cp___pr(ci-_@T+ c2 -_@T

aT

)

(2.2o)

Fv

fvl '

fv2

fv]

fv4

fvs

0

rxxJ1] x + rxyJ w]y + _xxJ1] z

rxTJ11x + rn,JBy + ZyzJ8 z

rxzJI]x + TyzJ1]y _"rzzJI] ._

u fv2 + Vfv3 + wry4 cp____( 8T @r aT

(2.21)

gv1'

gv2

= gv3

g,,4

gvs

0

TxxJ (x + rxyJ (y + z,=J (z

rxyJ(x + _J(y + ryzJ(z

rxzJ(x + _yzJ(v +ZzzJ(z

ugh2 + vg_3 + wg_4 + c_____pr(c3-_@T+c5_ _oT + c6__)@T

(2.22)

where

cI = j(_x2 +_y2+_=2)

c z = J ( _xT1x + _yrly + _=_Iz)

c3 = J ( {xC= ÷ _y(y+ {,(,)

9

C4 = j (13x2 +_/2 +_]z- ) (2.23)
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c6 : j((2._y_+_2)

Note that all the stress terms in £v, Fv and Gv should

be transformed. For example, the shear stress term r_ would

be transformed to;

au +,1 au au av + ,l av av":_ : _ (_y_ y a_ ÷ _,"_ ÷ L:-_ x a,__.__-_ ) (2.24)

2.3 Boundary Conditions

The numerical solution of any partial differential

equation requires the application of appropriate number of

properly posed boundary conditions. The important aspects

of boundary condition development are that the physical

definition of the flow problem must be satisfied and the

numerical algorithm with the developed boundary conditions

must be stable. The theory of characteristics suggests how

to decide the conditions required at a boundary. The

concept of characteristic theory is most easily developed

for the one-dimensional Euler equations. Extending the

concepts to three-dimensions, we can obtain three U., U_ +

c and U= - c characteristics in this system, using the fact
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that the incoming flow at the inlet plane is uniform. At

the inlet plane, only four pieces of information enter the

domain along the incoming characteristics and one piece

leaves along the outgoing characteristics because the flow

speed in the whole computational domain is subsonic.

Therefore, four boundary conditions must be specified, and

one relation has to be extracted from the characteristic

equation.

It is not necessary to fix values in terms of the

actual characteristic variables as long as the alternative

choice leads to a well posed problem. A particular good

choice on physical grounds is to specify the stagnation

enthalpy and the entropy of the incoming flow. For a

perfect gas, this corresponds to specifying the stagnation

temperature and pressure. These conditions are same as the

flow conditions through a duct or nozzle fed from a large

reservoir in which conditions remain constant. Constant

stagnation temperature _ and pressure Po are specified at

the inlet plane.

u 2
To--T+

2cp
(2.2s)

(2.26)
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The transverse velocities are assumed to be zero. The

relation which corresponds to the negative characteristic

can be derived along the characteristics Eq. (2.27).

dp _ du
p c - 0 (2.27)

This becomes

p - pcu : (p - pcu)i==_:ior (2.2e)

Substituting the inflow boundary condition Eqs. (2.25)

and (2.28) into Eq. (2.26), we can obtain the inlet

temperature, static-pressure and axial velocity. The axial

velocity near the duct edge approaches zero in order to

satisfy the no-slip condition on the wall during iterations

because the finite volume method is employed. The density

at the inlet is calculated from the equation of state. The

total initial energy at the entry plane can be obtained

from the calculated values.

At the exit, one negative characteristic enters

through the boundary into the computational domain. One

boundary condition must be specified at this plane. In this

study, constant static-pressure is specified at the exit

plane. Physically this condition corresponds to a duct with

an unobstructed exit into a large constant pressure

reservoir. Linear extrapolation is adopted for

evaluating the exit velocity and exit density. The exit
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temperature is calculated from the equation of state. The

total internal energy at the exit plane can be obtained

from the calculated values.

The no-slip condition is specified on the wall of the

duct and an adiabatic wall condition is imposed by setting

the normal derivative of temperature equal to zero. The

boundary values at the center, which is needed when using

the O-grid, are evaluated by averaging the surrounding flow

properties.

2.4 Turbulence Model

The Baldwin-Lomax turbulence model(1978) is applied

along the normal direction from the wall. This model has

been used extensively for attached or slightly separated

flows because it leads to low computational time

requirements and it appears to be comparable to more

complex turbulence models. The Baldwin-Lomax model is an

algebraic two-layer eddy viscosity model based on the

Cebeci-Smith(1974) method with modifications that avoid the

necessity for finding the edge of the boundary layer. Near

the wall, the Baldwin-Lomax model uses the well-known

Prandtl-Van Driest formulation for the turbulent viscosity.
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(2.29)

where

_

1 : Ky[l-exp (---) ]
A"

(2.30)

]31 is the magnitude of the local vorticity vector.

t 8u 8v 2 o_v Ow 2 Ow 8u 2
(2.3l}

and

p wu=y _ p_-_TJ._y

Ilw I.Zw

(2.32)

÷

Since the damping constant A

pressure gradient, an empirical equatio n

+

Crawford(1980) is employed for A.

is a function of the

by Kays and

A_

25.0

7.1bp" + 1.0

If p'> 0.0 , b = 2.9

Ifp'<O.O , b = 4.25

(2.33)

where

_

Q(I/2) ¢w-(3/2)

(2.34)
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In this study, T, is evaluated as the absolute value; the

value of p+ in the computation is less than O(i0_).

In the outer region, a Clauser formulation with a

Klebanoff intermittency function is used.

(_)ouc._ = 0.02688 p Fwak_Fkleb(y) (2.35)

where

Fwake = rain ( y_× Fma x , 0.25 Yma× q_if / F_ax )

and Klebanoff intermittency factor is given by

F_b(y) = [I÷5.5 (0.3--Z-Y)6] I
Y_

where y_= and F_ are determined from the equation

y__"
F(y) = yIGI [ l-exp ( - ) ]

A"

(2.36)

(2.37)

(2.38)

The quantity q4 is the difference between the maximum and

minimum total velocity in the profile. The parameter F_= is

the maximum value of F(y) that occurs in a profile, and y_=

is the value of y at which it occurs. The length y is the

normal distance from the wall and Yc is the smallest value

of y at which values from the inner and outer formula are

equal.
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(1_) inner Y _ Yc

_ ; [ (2.39)
( _ _) o,,_,: Y > Yc

The turbulent Prandtl number is assumed to be Pr t = 0.9

in the present study.

2.5 Turbulence Model Implementation

Eddy viscosity turbulence models are usually derived

and validated for two-dimensional boundary layer flows.

Further, the eddy viscosity coefficient determined by these

models depends on the local flow profiles along the normal

direction from the wall. The Baldwin-Lomax turbulence model

performs adequately for fully attached or mildly separated

flows over simple geometry. However, for the flows over

more complex configurations, where the boundary layers and

wakes may interact or flow separation may occur, the major

difficulty encountered in applying the Baldwin-Lomax

turbulence model in that of properly evaluating the scale

length y_= and in turn, of determining (_,)_ for boundary

layer profiles.

The turbulence length scales are determined by 1 of

Eq. (2.30) in the inner layer, and y_ in the outer layer.

The eddy viscosity in the outer layer depends on the F_

and the Klebanoff inte-_mittency factor. F_ is a function
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of y,= and F_,. Fa,_ is a function of (y/y_,). The y_= is the

distance at which the maximum value of F(y) occurs along

the normal direction from the wall, where F(y) is

proportional to the moment of vorticity. For simple

turbulence flows, a single well defined peak exists in the

function F(y) along a given streamwise station. When the

flows are complex, the function F(y) may exhibit multiple

local maxima. Selection of inappropriate length scales

leads to inaccurate flow structure. Various methods for

determining the appropriate length scale have been

proposed.

Horstman(1987) modified the Baldwin-Lomax turbulence

model for the problem of shock-wave and turbulent boundary

layer interaction flows. The y_ occurred outside the

boundary layer thickness upstream and downstream of the

shock induced separated region. The first maximum value of

F(y) away from the wall was used to insure y_= is less than

the boundary layer thickness.

Degani et al. (1986, 1991) proposed modification of the

Baldwin-Lomax turbulence model in computing the three-

dimensional separated flow around a prolate spheroid at

high incidence in the supersonic and subsonic flow. To

eliminate the selection of large F_ due to the presence of

the vortex sheet, it was chosen at the first peak value of
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F(y) from the wall. In case of showing a nonsmooth behavior

in F(y), a maximum value of F(y) was chosen at the 90% of

the local maximum value. Another modification was that a

cut-off distance was specified in terms of y_= from the

previous ray. If no peak of F(y) is found in that range,

the value of F_ and y_ were taken as those found on the

previous rays.

As mentioned in introduction, the three-dimensional

flow separation occurs in the S-duct by the pressure force

due to the duct geometry change rather than by shear force.

The vortical structure, which results from the flow

separation, is stretched to the second half of the duct by

the streamwise velocity. It causes y_ to be located outside

the boundary layer thickness as shown in Fig. 2.1(b);

therefore, it is not necessary to consider the whole normal

direction from the wall to pick the correct y_.

In this study, in order to avoid choosing an

inappropriate length scale(y_), the cut-off distances are

evaluated in every crossplane. They are obtained by

averaging the local boundary layer thicknesses within _ =

45 °. The effect of strong secondary flow due to flow

separation can be neglected in this region. The length

scale search is restricted to within the cut-off distance.

If the local boundary layer thickness is less than 110% of



37

the cut-off distance, F_= and y_ are chosen at the maximum

peak point within that distance. Otherwise, the first peak

value of F(y) from the wall is chosen as F_=.

If one employs the same method to decide a cut-off

distance in the case of the flow with vortex generators,

the cut-off distance is less than that of the flow without

vortex generators. This is because the local boundary layer

thickness within _ = 45 ° is thinner than with without vortex

generators because the shed vortex from the vortex

generator has a streamwise velocity deficit at the region

of the vortex core. The cut-off distance of the flow with

vortex generators is adjusted to be greater than the

average boundary layer thickness which is obtained by

averaging the local boundary layer thicknesses within _ =

45 °.
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Fig. 2.1 Behavior of F(y) = yl_l[(1 - exp(-y*/A+)] through
the flow field



CHAPTER 3

NUMERICAL METHOD

The unsteady compressible Navier-Stokes equations are

a mixed set of parabolic-hyperbolic equations. If the

unsteady terms are dropped from these equations, the

resulting equations become a mixed set of elliptic-

hyperbolic equations. These equations are more difficult to

solve than the unsteady compressible Navier-Stokes

equations. Most compressible Navier-Stokes equation

solutions are obtained using the unsteady term; the steady-

state solutions are obtained by time marching until

sufficient convergence is achieved.

Both explicit and implicit schemes have been used to

solve the compressible Navier-Stokes equations.

MacCormack(1969) solved the compressible Navier-Stokes

equations using an explicit scheme with a predictor-

corrector technique. He used forward differences for all

spatial derivatives in the predictor step while backward

differences was used in the corrector step. Although the

explicit schemes have an advantage that they are easy to

implement, these schemes need long computation time because

of the limitation on the time step due to the Courant-

Friedrichs-Lewy(CFL) stability restriction. For this

39
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reason, schemes with less-restrictive stability conditions

have been an important subject of investigation. Allen and

Cheng(1970) introduced a nonconsistent approximation scheme

[f n = (fi+in _2fi_+l+fi.to)/ax2]. This approximation scheme

becomes consistent when the steady state is reached and it

has good stability properties when the mesh Reynolds number

is less than 2. MacCormack(1971) modified his original

scheme by splitting a sequence of one-dimensional

operations. The stability condition on the revised scheme

is less restrictive than his original scheme. Deiwert(1975)

employed a finite volume method to solve compressible

Navier-Stokes equations with less-restrictive stability

condition. However, the explicit schemes are not a suitable

method for solving high Reynolds number flows where the

viscous regions become very thin. For these flows, a very

fine mesh is required near the wall in order to resolve the

boundary layer. This leads to an expensive calculation

because of the small time step due to the stability

restriction.

A large and productive effort has been occurred in the

area of implicit schemes. Polezhaev(1967) proposed an ADI

(Alternating Direction Implicit) scheme without an

iterative process. Briley and McDonald(1973) applied the

generalized ADI procedure to solve the compressible Navier-
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Stokes equation. Beam and Warming(1978) solved the

compressible Navier-Stokes equation by the implicit method,

which was the same class of ADI schemes developed by

McDonald and Briley(1975). MacCormack(1981) developed an

implicit scheme analogue of his explicit scheme. Even

though implicit schemes are condemned for their large

arithmetic operation counts, these schemes have been

praised for their improved stability conditions.

In this study, an implicit finite volume, lower-upper

time marching code(RPLUS3D), which was developed at NASA

Lewis Reseach Center, is employed, and the boundary

conditions and algebraic turbulence model are added in

conjuction with the flow physics; the chemical reaction

term are eliminated to save the computation time. This

computer code employs a lower-upper(LU) factored implicit

scheme developed by Jameson and Turkel(1981). This scheme

is unconditionally stable in any number of space

dimensions. Despite being implicit, the LU scheme requires

only scalar diagonal inversions while most other implicit

schemes require block matrix inversions. The use of scalar

diagonal inversions offers large savings in computation

time and temporary storage.
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3.1 LU Scheme

The unfactored implicit scheme with time marching for

the vectorized Eq. (2.15) can be formulated as follows;

viscous terms are treated explicitly to avoid complexity.

_.I : _,_ _ _C[D_C_-I) + m.C_-_) + D_(_-_-)]
(3.z)

G v) ](z v) + D_ ( D_ (^"+ at[m_ "n _) +

where D_, D, and D_ are the spatial finite difference

operators. The superscript n denotes the time level, i.e.,

= U(nat). The difficulty for solving these algebraic

equations comes from the nonlinearity of the set of

equation. The linearized equations with the same temporal

accuracy can be obtain by the Taylor series expansion.

@(_) =_(_n)+I aE) n

_(0,,-_) :._(#o) + _-_ (C_"- 0_) +o(l,,cl _)

a¢_ '+,) =a(_) + T_ ( _'' - _) +°(lncl`)

(3.2)

Let the linearized flux Jacobians of the convective flux

vectors be
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.,__ a,_ __ a__, __ aG (3.3)

and the correction be _J = U n÷1 _ _ o. The Jacobian

matrices i, B, and C are given in Appendix A.

This unfactored implicit scheme is first order

accurate in time. Therefore, the second higher order terms

can be neglected without loss of time accuracy of the

linearized governing equations.

(3.4)

=-aC[D_(E-Ev) * D,(@-@ v) + D¢(G-Gv)]

The linearized Eq. (3.4) with the unfactored implicit

scheme has large block banded matrices, which require large

storage and computation time for inversion. The Eq. (3.4)

can be factorized by replacing the operator with a product

of three one-dimensional operators. This is same as the ADI

scheme, which also requires inversions of block tridigonal

or block pentadiagonal matrices. If one solves the block

tridiagonal system by Gaussian elimination without

pivoting, the operation count for the block Thomas

algorithm is O(NM 3) where M is the block size and N is the

number of unknowns. Clearly it is desirable to avoid

solving a block tridiagonal system. For many standard
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algorithms, one can not be confident that the Thomas

algorithm is numerically stable if the diagonal dominance

is lost by increasing time steps.

Jameson and Turkel(1981) proposed the idea of a lower-

upper factored implicit scheme that is unconditionally

stable in any number of space dimensions and also yields a

steady-state solution that is independent of _t. The LU

implicit scheme needs only two factors even for three-

dimensional problems because of the unique manner of

splitting. As a result, this scheme is more stable and

robust than ADI schemes. Let

C_ .s)

The split flux Jacobians, A÷, B÷,C +, _-, B" and C- are

constructed such that the eiqenvalues of "+" matrices are

nonnegative and those of "-" matrices are nonpositive. Of

the many ways of splitting, Jameson and Yoon's(1987) method

is employed as follows:
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2.- : o 5 (._ - y_z)

_" = o 5 (_ ÷ y_z)
(3.6)

_- : o 5 (_-y_/)

_'=o 5 (_*yez)

_- =o 5(_-yez)

where 7_, 75 and 7c are greater than the spectral radii of

the flux Jacobians associated with them:

y_ = max ( I_._[ )

y_ = max ( l_._]) (3._)

Yc = max (lie[)

Here, A_, _8 and k¢ represent eigenvalues of Jacobian

matrices A, B and C. The spectral radii and eigenvalues of

Jacobian matrices are obtained in section 3.3.

Substituting Eq. (3.5) into Eq. (3.4) and performing

the first order upwind difference according to the sign of

the eigenvalues, The linearized implicit scheme can be

obtained:

=_aC[D{(___v ) _ Dn(@__v ) + _(_-_v) ] (3.8)



where D_",

while D_ + ,

(3.8) can
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D,, and D/ denotes backward-difference operators

+ m. ÷D, , _ are forward-difference operators. Eq.

be expanded in discretized form as follows:

(3.9)

where

RHS = D_ (E - E,) + D,(/P - F.) + Dr (G - G,) (3.zo)

This discretized equation can be written as

[ {I + At (A" - A" + [3" - B" + C" - C" ) }

÷ At (D_A" + D_B" + D_. C" - A" - B" - C')

÷ at (D;i + D_" ÷ D;t" ÷ A" . _- ÷ _ ) ]aO
= At RHS

(3.zl)

Eq. (3.11) can be factorized according to the sign of the

Jacobian matrices

{K ÷ at ( D[_." + D;,[3" ÷ D;,_" - _," - _" - _') }(K)"

= _tRHS
(3. _.2)

where

K=Z*,_t:CA" -A ÷§'-,_ +_"-6") (3.13)

Notes that matrix K is diagonal. This can be easily
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verified by substituting Eq. (3.6) into Eq. (3.13). ]¢' is

also diagonal and can be moved to the right hand side.

{I ÷ At (D_-A" + D.'B" + D_'C"- A" - B- - C-) }

{_ +at(D_'A *D.'_" +D_'_" +A" +_" +e') }AU
= At {I" at (7; + 7B + 7¢ )I }RHS

(3.z4)

The operator on the left hand side of Eq. (3.14)

represents Lower and Upper operator of this scheme. These

two operator represent forward and backward substitutions.

It is interesting to note that if there is no source term

in the governing equation, the numerical method completely

eliminates the need for block matrix inversion. In fact,

the two operators in Eq. (3.14) require only scalar

inversions. Although the LU scheme is an implicit scheme,

the numerical operation counts are not much differrent from

those of explicit methods.

The discretized equation in the finite volume method

is derived by approximating the integral form of the

equation to be solved. The computational region is divided

into elementary quadrilateral volumes within which the

integration is carried out, and the integral equation is

evaluated at each subdomain. This method can easily handle

the complicated geometry without considering the equation

written in curvilinear coordinates. It makes it possible to

avoid problems with metric singularities that are usually
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associated with finite difference methods. If this method

is applied on the uniform rectangular grid, the discretized

equation will be equal to the discretized equation using

the central finite difference method. It has second order

accuracy in space, but for the non-uniform grid the

convergence rate in space is less than second order.

3.2 Artificial Dissipation

The finite volume formulation reduces to a central

difference approximation on a uniform grid. It allows

undamped oscillations with alternative signs at odd and

even mesh points. Wiggles appear in the neighborhood of

severe pressure gradient regions or stagnation points.

These spurious oscillations can not be smoothed out totally

by the viscous and dissipation terms. In order to suppress

these numerical oscillations, the artificial dissipation

terms are added into the LU scheme.

In this study, Jameson's(1981) adaptive artificial

dissipation scheme is employed. The dissipation terms

consist of blended second and fourth order differences. The

fourth order difference terms provide background

dissipation throughout the flow field to prevent odd-even

decoupling which occurs from the linearized Euler equation

terms. The second order dissipation terms are used to
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stabilize the flow calculation near the regions of the

strong pressure gradients. These terms are explicitly added

to the RHS term as an additional residual. The added

dissipation term are as follows:

where

D((E(2) D," ( 0 _E(,_) 0
• _ i,j.k ...5,j. , -_ ;,j.k._.; k -3) _ kD(D(D;( ) )

.{2) = K2 Xi l,j,ki+_.j,k
max (Vi+2.j, k , -_i._.j.k , -_i,j.k, Vi-l.j,k)

(3.16)

= P_.I.J,k-2Pi. J,k +Pi-z,J.:I
Pi-z.j.t ÷ 2 pi.j.k ÷Pi-l.j,

(3.17)

X_._.j.;¢ = min ( (Jg)i..1.j,k , (J_)i,j,k) (3.1s)

(4)

E'' I j,k =max(0, K4-EI: _ j.k ) (3.19)
i 7" '

K2 and K4 are scalar constants. In this study, _ and _4 are

I and 1/32, respectively, and the magnitudes of artificial

dissipation coefficients are much less than the eddy

viscosity in the boundary layer. The term 7i.j.kis a spectral
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radius scaling factor and is defined as

?i,j.k = Y_ + Y@ + Y#

I

1

I

+Ic.ll_I÷ fc_il_l÷ Ic:lI_l÷c (C +c_÷(_)_

(3 .:)0)

which is the sum of the spectral radii of A, B and C.

The first terms in the parentheses of Eq. (3.15) are

the second order dissipation. It has an extra pressure

gradient coefficient which is constructed by taking the

second difference of the pressure. Its value increases in

the neighborhood of the strong pressure gradient region, so

the non-physical overshoot or undershoot are eliminated by

the second order term. The second terms in the parentheses

of Eq. (3.15) are the fourth order dissipation. The

coefficient _s) switches off when the second order nonlinear

coefficient is larger than the constant of the fourth order

coefficient.

3.3 Eigenvalues of Jacobian Matrices

The eigenvalues of Jacobian matrices are required to



51

analyze the stability of a numerical scheme. The Jacobian

matrices of non-conservative equation (A, B and C) are much

simpler than the Jacobian matrices of conservative equation

(A, B and C). Warming et ai.(1975) showed that an uniformly

bounded similarity transformation between the Jacobian

matrices of non-conservative equation and conservative

equation existed in the invicid gas dynamic equations. The

Jacobians of the generalized trnsformed convective flux

vectors can be expressed by the Jacobians of conservative

equation.

A

8_ _E . aE 8G
a-O - _-a-_ +_0 + _-0 - _ _ _ + _c

_ @F @E aF aG
a0 - nx_+nY_+n'au- n_+n_+n_c (3.21)

_ ad aE aF aG
sO - _a-O +_y_-0"_'_-0 = _+C_B+(,c

Using the similarity transformation,

changed to the simple form.

Eq. (3.21) is

(3.22)

It is not hard to find the eigenvalues of the Jacobian

matrices in the non-conservative equation. The eigenvalues
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_1,2,3 = U

= U+C
4

-_5 = U-C

(3.23)

The eigenvalues of B and C are similar to those of A,

only u in the eigenvalue of A has to replace to v and w,

respectively.

The eigenva!ues of _, B and C are easily obtained

using the Eq. (3.23). The eigenvalue of A are as follows:

X1.2.3 = _xu + _yv ÷ _w

I

X, = _,,u + _yv + _.w+ c (_+_+_.) -_

1

_s = _xu + _yv+ _zw- c(_÷_÷_z) 2

(3.24)

The eigenvalues of B and C are similar to those of _,

only _ in the eigenvalues of A has to replace to fl and _,

respectively.

In order to obtain the bound of the spectral radii in

the flux Jacobians, the biggest eigenvalue is tested.
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y_ = max (][i)i:_.5

l

_AAA(2_u 2 +v 2+w 2_20)

(3.25)

where AAA = max(_, _y, Sz).

Using the same method,

of B and C can be obtained:

the bound of the spectral radii

y _ = BBB ( 2 _u 2 + v 2 + w 2 ÷2 c) (3.26)

y_ = CCC( 2 _u2 + v 2 ÷ w 2 +2 C) (3.27)

where BBB = max(ux, _y, Uz) and CCC = max(_, _y, {,)



CHAPTER 4

DIFFUSING S-DUCT WITHOUT VORTEX GENERATORS

4.1 Geometry and Grid

The geometry of the diffusing S-duct examined in this

study is shown in Fig. 4.1. The duct centerline is defined

by two circular arcs with identical radii of curvature,

which are 5 times the inlet duct diameter, and subtended

angle @_=x/2 = 30 °. Both arcs lie within the xy-plane as

shown in Fig. 4.1. The coordinates (xcl, Ycl, zJ of the duct

centerline are given by Eq. (4.1):

For 0 < 8 _< _/2

xc, = asin8

Ycl = R cos8 - R

Zcl = 0

For 8_/2 <_ 8 < 8._ (4.1)

xcl = 2Rsin (_) - Rsin (@max-8)

Ycl = 2Rcos ( _ ) - R - RCOS (@max- @)

Zcl = 0

The cross-sectional shape of the duct perpendicular to

the centerline is circular. The diameter of the cross

section varies with the arc angle 8 and is given by Eq.

(4.2) .

54
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D ! 3 ( De @ De @- + -- -i) ( )2-2 (---i) ( )3

(4.2)

where D i and D c are the diameter at the S-duct inlet and

exit, respectively. The area ratio of the duct exit to

inlet is 1.51. The offset of the duct resulting from the

centerline curvature is 1.34D i. The length of the duct

measured along the centerline is 5.24D i. A straight pipe,

which is 4.6Di long, is installed upstream of the S-duct to

provide the desired boundary layer thickness at the inlet

of the S-duct. In order to minimize any downstream effect,

a 9D= straight section of pipe is attached at the exit of

the S-duct. The average inlet Mach number is 0.6 and the

Reynolds number based on the duct diameter is 1.76xi06.

In the present study, an O-grid is adopted because it

conforms well to the boundaries of the circular duct. The

O-grid consists of 47 radial points, 42 circumferential

points in the half duct, and 70 streamwise nodal points. A

finer grid is used in the region of flow separation.

Exponential stretching is used to obtain a fine mesh near

the wall. The upstream and downstream lengths of straight

ducts are also extended using the exponential stretching.

The mesh size adjacent to the duct surface is almost

1.25xI04 times the duct inlet diameter. The two grid points
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nearest the wall are at value of y÷ of about 2.6 and 5.7 at

the reference station (S/D i = -1.5).

The computed results do not depend on the initial

velocity conditions, i.e., the initial velocity profile

with or without adjusting the axial velocity by the one-

seventh power velocity distribution law near the wall. The

mass flow changes between the inlet and exit was within 1

percent for all calculations. The residuals for these

numerical solutions were reduced approximately three orders

of magnitude. Solutions were obtained on the Cray-YMP. The

number of iterations required to obtain the converged

solutions was approximately 40,000. The computational speed

was approximately 960 iterations per CPU hour.

4.2 Results and Discussion

When discussing numerical and experimental results,

streamwise position will refer to the distance to cross

stream-planes measured from the inlet of S-duct along the

duct centerline and normalized by the duct inlet diameter.

Position within cross stream-planes is specified by the

polar angle _, measured from the vertical in a positive

clockwise direction as shown in Fig. 4.1, and the radial

distance from the center!ine of the duct.
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Fig. 4.2 shows the surface static-pressure

distributions at _ = i0 °, 90 ° and 170 ° which are compared

with two experimental data. Note that the definition of the

surface static-pressure coefficient in the two experiments

is different. Vakili et ai.(1986) measured the reference

flow parameters at S/D i = -1.5, upstream of the S-duct for

normalizing downstream flow data. The reference variables

were evaluated at the center of the duct.

Wellborn et ai.(1992) measured the reference flow

parameters at S/D_ = -0.5, upstream of the S-duct. The

reference dynamic pressure was evaluated by subtracting the

wall static-pressure from the total-pressure measured at

the center of the duct. They used a similar duct but larger

than that used by Vakili et ai.(1986); therefore, the

Reynolds number of Wellborn et ai.(1992) experiment is 47%

higher than that of Vakili et ai.(1986) experiment.

However, In this study, calculations were made using the

same Reynolds number as the Vakili et ai.(1986) experiment.

The computed surface static-pressure distributions are

in good agreement with the experimental data except in the

separation region. In the separation region, the predicted

values of surface static-pressure are higher than the two

experimental results. Both experimental data show constant

values of static-pressure at _ = 90 ° and 170 ° in the region
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2 S S/D i _ 3; the computational result shows a similar

result in the region 3 S S/Di S 4.

The experimental flow separation region shown in Fig.

4.2 was determined by surface oil flow visualization. The

computed flow separation region is determined by examining

the streamwise velocity in the vertical plane of symmetry.

The predicted separation length is 1.94, which is a little

shorter than the experimental value of 2.1. The predicted

separation (2.44 < S/Di < 4.40) occurs farther downstream

than was observed experimentally (2.02 < S/Di < 4.13). This

indicates that the applied turbulence model, even as

modified, cannot correctly account for the three-

dimensional separation flow with very strong secondary

flow. The experimental and numerical results show that the

flow fields in a diffusing S-duct have strong secondary

velocities with flow separation, and the counter-rotating

vortices resulting from the flow separation are stretched

into the second half bend of the duct by the streamwise

velocity. These complex flow fields result in the moment of

vorticity(F(y)) having several peak values along the normal

direction from the wall. Although the first peak value from

the wall is chosen as the length scale(y_) in order to

avoid choosing an inappropriate length scale, this chosen

length scale in the flow separation region cannot be
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considered as a perfectly correct length scale.

The reverse flow in a diffusing S-duct is associated

with the adverse pressure gradient due to the increase of

duct area and the secondary flow due to the duct curvature.

Fig. 4.3 shows the velocity profiles in the vertical plane

of symmetry. The reverse flow occurs away from the wall; an

enlarged view is shown in Fig 4.3(b) to display this

feature more clearly. These different characteristics of

flow separation can occur due to the turbulence model. If

the function F(y) has a peak value close to the wall, the

eddy viscosity along the normal direction from the wall

approaches quickly to zero by the Klebanoff intermittency

factor except the region of the near wall. This incorrect

viscosity profile cannnot adequately account for the

reverse flow associated with the adverse pressure gradient

and the strong secondary flow.

Fig. 4.4 shows the surface static-pressure

distribution along the circumferential direction at the

three different streamwise locations S/D i = 0.96, 2.97 and

4.01. The computational results at S/D i = 0.96 and 4.01

agree quite well with the experimental data. S/D i = 0.96 and

4.01 are located upstream and downstream of the flow

separation region, respectively. The computed values of

surface static-pressure at S/D i = 2.97, which is located
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within the flow separation region, are higher than the

experimental data. This overprediction of surface static-

pressure seems to result from the inadequate turbulence

model as previously mentioned.

Fig. 4.5 shows the static-pressure contours at the

various streamwise locations. The computed results are

compared with Vakili et al.s(1987) experimental data. Since

the flow is symmetric with respect to a vertical plane

passing through the centerline, only half of the plots are

shown in these figures. The calculated static-pressure

contours show similar trends as the experimental results,

but the computed static-pressure levels are higher than the

experimental values. The static-pressure coefficient are

evaluated as (Pl_ - Pr:f)/q_f, and the reference values are

measured at the center of duct in the reference plane (S/D i

= -1.5). Comparing two experimental results of the surface

static-pressure coefficient of Fig. 4.2(a) and the static-

pressure coefficient contours of Fig. 4.5, the static-

pressure coefficient near the wall in Fig. 4.5 is much

lower than that shown in Fig 4.2(a). However, the computed

static-pressure coefficient near the wall in Fig. 4.5 are

very close to the experimental surface static-pressure

coefficient, and also Fig. 4.2(a) shows that the surface

static-pressure coefficients, even if at the reference
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plane, are much different along the circumferential

direction. This probably results from deficiencies in the

experiments, primarily coarse data acquisition locations

and uncertainties in the static-pressure measurements using

pitot tubes.

Figs. 4.5(a) and 4.5(b) show the increase of the

static-pressure toward the outer wall in the first half

bend. This result is anticipated by the inviscid theory, in

the second bend, the static-pressure increases from the

upper wall to the lower wall as shown in Figs. 4.5(d) and

4.5(e) due to the adverse curvature direction. The static

pressure along the duct increases due to the increase of

duct area. The static pressure core shown in Fig. 4.5(e)

results from the streamwise velocity deficit at the region

of the two counter-rotating vortices. This means that

nonuniform flow at the exit occurs from the flow

separation.

Total-pressure contours compared with the experimental

data obtained by Vakili et a1.(1987) are shown in Fig. 4.6.

Fig. 4.7 shows the total-pressure contours compared with

the experimental data obtained by Wellborn et al. (1992).

Note the different definition of the total-pressure

coefficient in the two experimental data. The agreement

between the computational and experimental results is quite

good except downstream of the flow separation. The
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disagreement at the downstream of the flow separation

caused by the different flow separation region.

A qualitative picture of the secondary flow pattern

in a curved duct is that an inviscid core fluid moves

toward the outer wall of the duct, and a low speed boundary

layer fluid migrates circumferentially from the outer wall

to the inner wall in the first half of the S-duct. This

phenomenon results in low energy flow accumulating near the

inner wall of the first half bend. This is shown in the

total-pressure contours of Fig. 4.6(d). The adverse

pressure gradient is induced on the second half bend of the

duct due to increase of the duct area. The pressure

gradient causes a thick boundary layer and deflection of

the streamwise flow direction.

The above mentioned secondary flow pattern contributes

to the formation of a pair of counter-rotating vortices by

the three-dimensional flow separation. Tobak and

Peake(1982) showed the topographical structure of three-

dimensional flow separation. The counter-rotating vortices

formed by the vortex lift-off stretch to the exit of the S-

duct by the streamwise velocity, and move away from the

wall to the center of the duct. In the region between two

counter-rotating vortices, the secondary velocities induced

by these vortices push the low energy flow toward the

center of the duct. The high energy flow between the
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vortices and the duct wall is pushed toward the boundary

layer. This mechanism makes the convex shape of the

inviscid core flow region as shown in Fig. 4.6(f).

The shape of the total-pressure contours in the cross

plane depends on the strength of the counter-rotating

vortices and the core location of the vortices in that

plane. They are related to the original location of the

counter-rotating vortices in the duct. The computed three-

dimensional flow separation region occurred further

downstream than was observed in the two experiments. This

causes the discrepancy between the computational and

experimental total pressure contours at S/Di = 5.24 and

5.73.

Comparing Figs. 4.7 and 4.8, we see that axial Mach

number contours are very similar to the total-pressure

contours at the same axial location. The computational

total-pressure contours at S/D i = 5.24 and 5.73 indicate

that the computed streamwise velocity deficit (U. - u) at

the region of the counter-rotating vortices is bigger than

was observed experimentally. This large streamwise velocity

deficit makes the inviscid core flow region larger in order

to satisfy the constant mass flux along the streamwise

direction.

Fig. 4.9 shows the secondary velocity profiles at the
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five stations along the duct. They are compared with the

experimental results obtained by Vakili et ai.(1987). Fig.

4.10 is the secondary velocity profiles compared with the

experimental results obtained by Wellborn et ai.(1992) at

S/Di = 5.73. The development of secondary flow in the curved

duct is clearly shown in these figures. The computational

results are in good agreement with experimental data except

downstream of the flow separation region. The secondary

velocity profiles in the first bend clearly depict the

qualitative picture of the secondary flow pattern in the

curved duct as mentioned in the discussion concerning the

total-pressure contours.

Fig. 4.9(c) shows the accumulation of low energy flow

at the lower wall, which is consistent with the observation

of the total-pressure contours. Downstream of the flow

separation region, Figs. 4.9 and 4.10 show that a pair of

counter-rotating vortices move away from the wall and

toward the center of the duct. The computational results

show that the secondary velocity is overestimated

downstream of flow separation. This results from the small

eddy viscosity effect in the flow separation region by the

implemented turbulence model, i.e., F_= and y_= are chosen

at the point of the first peak value from the wall in that

region.



65

The variations of boundary layer thickness at _ = i0 °,

90 ° and 170 ° along the duct are shown in Fig. 4.11. The

boundary layer thickness is defined as the normal distance

from the wall where the total-pressure coefficient is 1.0.

The predicted results are compared with the experimental

results obtained by Vaki!i et ai.(1987). The computational

results and experimental data are in reasonable agreement.

The rapid boundary layer growth at 9 = 170 ° is caused by

the flow separation. In the transition region (S/D i = 0.0)

from the straight duct into the first bend, the computed

results show that the boundary layer thickness at _ = 170 °

is less than that at _ = i0 °. The streamwise velocity near

the lower wall in the transition region is faster than that

near the upper wall due to the effect of the curved

geometry. It was well depicted in the static-pressure

contours as shown in Fig. 4.5. The experimental data do not

clearly show the effect of this flow mechanism. As shown in

the secondary flow pattern of Fig. 4.9, the high energy

flow migrates toward the outer wall in the first bend,

therefore the boundary layer thickness at _ = !0 ° along the

duct is less than that at _ = 90 ° and 170 °

Downstream of the flow separation, the computational

result shows that the boundary layer thickness at _ = 90 °

is less than that at _ = i0 ° The reason is that the strong
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secondary velocities induced by the counter-rotating

vortices push the high energy flow toward the wall. The

stronger secondary velocities, as compared with

experiments, are associated with the fact the computed

total-pressure boundary layer is thinner than the

experimentally measured one.

Fig. 4.12 shows the velocity profile along the normal

direction from the wall at the four different streamwise

locations. The first grid points in the computation are

located inside the visccus sublayer (y÷ < 5). At the first

grid points, the friction velocity is calculated to

normalize the velocity profile. The viscous sublayer

region, the log linear region, and the wake region are

shown in this figure. In Fig. 4.12(b), the velocity profile

at _ = 170° is not shown because the definition of the

friction velocity is not applicable in the flow separation

region. At the exit of S-duct (S/D i = 5.2), the flow is

reattached but a pair of counter-rotating vortices are

present as shown in Fig. 4.9(e). These cause the boundary

layer profile to deviate from the law of the wall at _ =

170 ° . The velocity profiles at _ = 170 ° show the large

streamwise velocity deficit (U. - u). Fig. 4.12(d) shows a

comparison with the velocity profile measured by Wellborn

et al. (1992) at S/D i = 5.73. The agreement in the wake
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region is poor because the strength of the counter-rotating

vortices was overestimated as previously mentioned.

The skin friction values along the streamwise

direction are plotted for 9 = i0 °, 90 ° and 170 ° in Fig.

4.13. Note that there is no experimental data for the skin

friction values. The trends of the computed results are

similar to the trends of Bansod and Bradshaw's(1973)

experimental data for low speed flow in a nondiffusing S-

duct. The skin friction decreases along the duct due to the

increase of the duct area.

Fig. 4.14 shows the streamlines in the symmetry plane

along the duct. The experimental result was obtained by

placing a thin metal plate in the symmetry plane of the S-

duct. Even though there is no cross flow in this symmetry

plane, the presence of thin plate in the symmetry plane

introduces shear layer development and blockage. However,

the comparison with Wellborn et al.'s(1992) experimental

result agrees well qualitatively.

In the current computations, numerical results

demonstrate the capability of a modified algebraic

turbulence model in the flow fields of the three-

dimensional flow separation with a strong secondary flow.

The computed results agree quite well with the experimental

results except in the flow separation region. Even though

there are deviations between experimental and numerical
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results in the flow separation region, the computed results

depict well the flow structure in the diffusing S-duct.

However, further studies to obtain the correct length scale

in the flow separation region are required.
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direction.
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Exp. Vakili et al. (1986)
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Exp. Wellborn et al. (1992)

( Ma : 0.6, Re d = 2.6xi06 )
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Fig. 4.4 Circumferential surface-static coefficient.

Cp. = (p,_ - p_.,,)/(p_ - p,,_,)

( Ma = 0.6, Ree = i.'76xi06 )

Exp. We llborn et al. ( 19 9 2 }

( Ma = O. 6, Re d = 2.6x10 6 )
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STATIC PRESSURE COEFFICIENT CONTOURS

( Without Vortex Generators )

EXP ER !MENT OHP UTAT I ON

o.o

(a) at S/D_ = 0.17

0.05

O.Ot

0.04

OJ

(b) at s/_ = 1.31

Fig. 4.5 Static-pressure coefficient contours without

vortex generators.

( Ma= 0.6, Re d = 1.76x106 )

Exp. Vakili et a1.(1987)
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EXPERIMENTy 0.40_ COMPUTATION

O..Z3

(e) at S/D_ = 5.24
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TOTAL PRESSURE COEFFICIENT CONTOURS

( Without Vortex Generators )

EXP"RIM.... PUTATION

O0 _.8 "0.90

. 0.7

(a) at S/D_ = -1.5

0.6
(]_) at s/D, = 0.17

Fig. 4.6 Total-pressure coefficient contours without

vortex generators.

( Ma = O.6, Re_ = 1.76xi06 )

Exp. Vakili e_ al. (1987)
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COMPUTATION

1.05
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(e) at S/D i = 3.93

(f} at s/I_, = 5.24
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EXPERIMENT COMPUTATION

<
h .

Fig. 4.7 Total-pressure coefficient contours without

vortex generators. At S/_ = 5.73
( Ma = 0.6, Re d = 1.76xi0" )

Exp. Wellborn et ai.(1992)

( Ma = 0.6, Re d = 2.6x106 )
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EXPERIMENT
TATION

Fig. 4.8 Axial Mach number contours without vortex

generators. At S/D_ = 5.73

( Ma = 0.6, Re d = 1.76xi06 )

Exp. Wellborn et al. (1992)
( Ma = 0.6, Re d = 2.6xi06 )
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SECONDARYVELOCITY VECTORS

( Without Vortex Generators )

%
EXPERIMENT UTATION

Vel. scale

I_.__[ . G 4

(a) at S/D_ = -1.5

Vel. scale

7.'0.4

(_) at s/D, = 1.31

Fig. 4.9 Secondary velocity profiles without vortex

generators.

( Ma = 0.6, Re d = 1.76xI0 _ )

Exp. Vakili e_ ai.(1987)
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EXPERIMENT

(C) at s/D_ = 2"62

vel. scale

I__ . 0.4

1:
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Ve!. scale

l..._.. 0.4

(d) at S/_>,-- 3.93
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EXP ER IMENT : UTATI ON

li_ _ _ '

(e) at S/D i = 5.24



85

Fig. 4.10 Secondary velocity profiles without vortex

generators. At S/_ = 5.73

( Ma = 0.6, Re,, = 1.76x106 )

Exp. Wellborn et al. (1992)
( Ha = 0.6, Re_ = 2.6xi06 )
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Fig. 4.11 Boundary layer thickness.
( Ma = 0.6, Reu = 1-76xI0_ )

Exp. Vakili et al. (1987)
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Fig. 4.12(a) Boundary layer wall coordinates plots at

S/D_ = -l. 5
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Fig. 4.12 (b) Boundary layer wall coordinates plots at

s/_, = 2.61
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Fiq. 4.12 (d) Boundary layer wall coordinates plots at

S/_, = 5.73

Exp. Wellborn et al. (1992)
( Ma = 0.6, Re d = 2 .6XI06 )
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Fig. 4.13 skin friction coefficient. (Cr = T._/q_r)
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EXPERIMENT

Fig. 4.14 Streamline along the S-duct centerline

( Ma = 0.6, Re d = !.76x106 )

Exp. Wellborn et ai.(1992)

( Ma = 0.6, Re d = 2.6xi06 )



CHAPTER 5

STRAIGHT DUCT WITH VORTEX GENERATORS

The spiral longitudinal vortex interactions with

turbulent boundary layer are numerically investigated in a

cylindrical duct. The helical motion of the injected vortex

is compared with the prediction by imagine vortex system

and the prediction by Wendt et al.'s(1992) vortex

interaction model. Two prediction models are derived in the

Appendix B and C. In a second model, the constants which

were derived from the experimental result of the external

flow are employed. Although it is not sufficient to apply

the same constants to predict the helical motion of the

injected vortices in the internal flow, a reasonable

prediction can be obtained in a short region just

downstream of the vortex generators.

Kunik(1986) conducted a numerical study about the

behavior of the injected vortex using the PNS equations on

the straight duct. The flow was incompressible and the

Reynolds number based on pipe diameter was 2000. The

injected vortex was set up at the inlet of the

computational region because the PNS equations could be

solved by forward marching in space. Note that the PNS

equations cannot consider the streamwise velocity deficit

at the vortex core sufficiently because of neglecting the

91
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streamwise diffusion term of the FNS equations.

In the present study, the injected vortices are set up

within the computational region, and three-dimensional FNS

equations are solved by the previous described numerical

technique. Fig. 5.1 shows the computational grid for a

cylindrical duct with L/D = 20.0. The polar grid topology

consists of 47 radial points, 73 circumferential points and

60 streamwise nodal points. Exponential stretching is used

to obtain a fine mesh near the wall. In order to obtain

high quality velocity profile, the wall shear stresses are

measured within the viscous sublayer. The first grid point

nearest the wall has a y÷ value of less than 3, which is

about 1.6x10 _ times the duct diameter. The location of

vortex generator is at X/D = 2.1. The entrance Mach number

is 0.6 and the Reynolds number based on the inlet diameter

is l. Oxl06 .

The number of iterations required to obtain a

converged solution was approximately 25,000. Solutions were

obtained on the Cray-YMP. The computational speed for the

full duct was approximately 540 iterations per CPU hour.

The residuals for these solutions were reduced by almost

three orders of magnitude. The mass flow changes between

the inlet and exit were within 1 percent.
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5.1 Vortex Generator Model

The shed vortex from the vortex generator is modeled

by providing the two-dimensional secondary flow structure

in a crossplane. The secondary velocity structure is

formulated as a viscous trailing vortex on the assumption

of steady, incompressible, laminar and axisymmetric flow.

The secondary velocity structure obtained with the above

assumptions can be applied to the compressible and

turbulent flow, because only one crossplane of the

computational domain employs this vortical structure to

simulate the shed vortex downstream of vortex generator.

The Navier-Stokes equations in cylindrical coordinates

based on the origin of the trailing vortex in the infinite

space are as follows:

radial mom. eq.
au: au. ue2 1 ap

+ U x -- -- _u: _r -_ : p ar

U.
+ V [VU: - _ ]

r 2

(s.1)

roCa¢ional morn. eq.
au_ au e u r U9
-- + - v C_u,

u= ar + u_-j-_ r
_u_,]

r 2

(s.2)
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axia! morn. eq. aUx aux _ 1 ap + v v 2 u x
u: a--r ÷ u_ ax pax

(s.3)

continuty eq.
i a(r u:) aux

+ - 0 (5.4)
r ar ax

where

Or 2 tar ax =

These equations are linearized and solved by making

the following assumptions:

I) The streamwise velocity deficit u d = U® - u_ and the

rotational velocity u 0 are small compared to the

free-stream velocity U,.

2) The radial velocity u r is very small compared to U,.

3) The Reynolds number of the main flow, U®x/_, is

large.

These assumptions reduce the above momentum and continuity

Eqs. (5.1) - (5.4) to

radial morn. eq.
ue2 _ 1 ap (s .6)
r p ar

rotational morn. eq.
aue _ue + i au, _ us ]

u. ax - v [ az2 r az r2

(s.7)
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axial morn. eq. U.-- -
au_ au_ ! au_
ax - v [ or--_ . r or ]

(5.8)

continuty eq. I a(ru:) au_ _ o (s.9)
r ar ax

The boundary conditions to be satisfied by these

linearized equations are:

x > 0 , u 0 - 0 and u d - 0 as r -

x - _ , u s - 0 and ud - 0 for all r

x = 0 , u, = F/2_r , ud = 0 except at the singular

point r = 0.

By the nature of the approximations, the vortex is examined

at some distance downstream of its origin. Hence it is

sufficient to assume that the vortex is suddenly generated

at x = 0 as a free vortex of circulation F. Far downstream,

the vortex finally decays until all the perturbation

velocities u r, u s and u_ are once again zero. Under these

boundary conditions, the solutions of the reduced Eqs.

(5.6) - (5.9) are as follows:

F __r2) ] CS.Z0)
u_ - [i - exp (- 4v-----_2_r

Ar U. r 2
u: = ---exp ( ) (5.11)

2142 4vx
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A U- r2 (s.12)
u d = --exp ( --- )

X 4VX

The integration constant A can be found from equating the

change of momentum of the flow in the entire wake flow to

the drag on the vortex generator;

m 0
A - (5.13)

4_pv

where D o is the profile drag of the vortex generator.

Rotational velocity Eq. (5.10) and radial velocity Eq.

(5.11) can be used to set up the vortical flow in the cross

plane. However, comparing the magnitude of these velocities

with the assumptions that a small section of NACA 0012 wing

is used as a vortex generator with a proper angle of attack

and the length x from the origin of vortex to the cross

plane for vortical structure is O(i), the radial velocity

is small compared with the rotational velocity.

F [1 - exp ( U'r2__ ---)]
2_r 4vx

Ar U. r2
---exp(---)

2x 2 4vx

Fpxg.

m o

[i +___I ( U- r2
2! 4vx

__) . I (U- r2 2
3-7 -D:/)
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cr [i + 1 (U- r2 1 U.r 2 2.... ) + __ (--) + ... ] --O(i0 _-)
c 4 2 ! 4vx 3 ! 4vx

(5.14)

Only the rotational velocity is used to make the vortical

structure in a crossplane.

U.r 2
I" [! - exp (---) ] (5.10)

us - 2 _ r 4vx

If we apply the vortical structure of Eq. (5.10),

which is formulated as one fully rolled up trailing vortex,

to the circular duct directly, normal velocity component

exists on the duct wall. In order to consider the shed

vortex created from the vortex generator mounted within the

circular duct, we can employ the image vortex because of a

very small vortex core just downstream of vortex generator.

The image vortex of equal strength as the inviscid flow is

located outside the duct using Milne-Thomson's circle

theorem(1968). The superposed vortical flow within the duct

has no normal velocity component at the wall. The

tangential velocity component approaches zero at the wall

by reducing the magnitude of the superposed vortical flow

inside the boundary layer by the one-seventh power velocity

distribution law. These adjusted vortical velocities are

introduced at every point in the crossplane.

In order to consider the streamwise velocity deficit
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(u_ = U_ - u_) in that crossplane, the flow passing the

vortex generators is assumed as the steady-state steady-

flow process. The temperature and stagnation enthalpy at

the crossplane are calculated by averaging these values in

the upstream-plane and downstream-plane of the crossplane

for vortical structure. Even though the streamlines between

two crossplanes are not the same as the streamwise

direction due to the vortical flow, this approximation is

sufficient if the vortical flow is small compared with the

axial flow or the distance between two planes is small

compared with the duct diameter. The stagnation enthalpy

obtained by this approximation are uniform at every local

grid points of the crossplane because of the streamwise

velocity deficit in the downstream-plane for vortical

structure. From this stagnation enthalpy at the local grid

point, we can obtain the deficit of streamwise velocities

in the crossplane with _he calculated vortical velocities

and temperatures.

5.2 Results and Discussion

In order to examine the usefulness of the vortex

generator model and to investigate the effect of the

different type vortex generators in a straight duct, four
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different cases are tested: (i) single embedded vortex, (2)

counter-rotating vortices of the same strength that rotate

toward each other, (3) counter-rotating vortices of the

same strength that rotate away from each other, and (4) co-

rotating vortices, one vortex having double the strength of

the other.

number F/DU_ _ _ = r/R

0 °(i)

(2)

(3)

(4)

0.062

-0.062,+0.062

+0.062,-0.062

-0.062,-0.031

-18 °, 18 °

-27 °, 27 °

-27 °, 27 °

0.831

0.831

0.831

0.831

Table 5.1 The strength and location of the embedded

vortices (F is positive when the vortex rotates counter-

clockwise, and _ is the circumferential angle from the

vertical plane on the lower wall)

The boundary layer thickness at the axial location of

the vortex generator (x/D = 2.1) is 0.06 times the duct

radius. The vortex generator is at a height of 0.16 times

the duct radius. Therefore, the vortex generator tip is

located well outside of the boundary layer.

Figs. 5.2 - 5.4 show the computational results when a
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single vortex is embedded in a crossplane within the duct.

The total-pressure contours and secondary velocity profiles

at the several different streamwise locations are shown in

Fig. 5.2 and Fig. 5.3, respectively. Fig. 5.2(a) and Fig.

5.3(a) are the total-pressure contours and secondary

velocity profiles at the location of the vortex generator

(x/D = 2.1). The location of the shed vortex along the

downstream is shown in Fig 5.4. It is compared with the

predicted location by the image vortex and the vortex

interaction system.

The total-pressure contours in Fig. 5.2 show that the

boundary layer thickness in the region of downflow is

decreased because the induced secondary flow pushes the

high energy flow toward the wall. Adversely, the boundary

layer thickness in the region of upflow is increased by the

induced secondary flow. It shows that the appropriate

vortex generators can control the main flow.

The secondary velocity profiles in Fig. 5.3 show that

the strength of the vortex decays in the downstream

direction due to viscous diffusion. The streamwise vortex

trajectory shows a helical character which is predicted by

the inviscid theory. This characteristic is clearly shown

in Fig. 5.4.

Fig. 5.4(a) shows that the injected vortex moves

radially inward. It shows significant deviation between the
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computational result and simplified vortex interaction

model. Even though the prediction model using the image

vortex considers a mechanism which the injected vortex

moves radially inward, it is very weak because the vortex

moves radially inward after then the vortex core reaches

the wall. The predicted locations obtained by two

simplified prediction models are the same along the

streamwise direction, as shown in Fig. 5.4(a).

Physically, the boundary layer growth on the duct wall

retards the growth of the vortex core to the wall, but the

vortex core grows without blockage to the center of the

duct. This causes a transverse pressure gradient which is

not symmetric with respect to the vortex center. The

pressure gradient between the vortex center and the duct

wall is steeper than that between the vortex center and the

center of the duct as shown in Fig. 5.2. The vortex moves

radially inward as a result of this nonsymmetric pressure

gradient.

The location of the vortex along the circumferential

direction is in agreement with the location predicted by

the simplified model in the short region just downstream of

the location of vortex generator as shown in Fig. 5.4(b).

The deviation between the model location and computed

results increases with increasing downstream distance. Even

though the vortex interaction model considers the decay of
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vortex strength by the wall effect, this model does not

adequately consider the mechanism by which the vortex moves

radially inward. At the same strength of vortex, if the

vortex moves radially inward 10% from the original

location, the induced velocity by the image vortex is

reduced around 16% at the vortex core. The induced

velocities overestimated by the simple models overpredict

the azimuthal location of the vortex as it moves

downstream.

Fig. 5.5 shows the progression of the counter-rotating

vortices of the same strength that rotate toward each other

as they march down the duct. The left hand side and right

hand side of Fig. 5.5 are the total-pressure contours and

the secondary velocity profiles, respectively. Fig. 5.5(f)

shows that the boundary layer thickness in the lower wall

of the duct is one third of that in the upper wall of the

duct at the station VI (x/D = 16.10). It shows that the

main flow can be controlled by adjusting the number of

vortex generators, strength and location of vortex, etc.,.

The behavior of the vortices as they move downstream

is qualitatively similar to the behavior predicted by the

inviscid theory. Two vortices move away from each other,

and also move radially inward as shown in Fig. 5.6(a). The

deviation between the computational results and the

predictions of the two simple models is due to the weak



103

mechanism of radial flow behavior in the simple models as

mentioned in case of the single embedded vortex.

The secondary velocities, induced by the counter-

rotating vortices rotating toward each other, force the

high energy flows into each other. Therefore, the pressure

gradient with respect to the vortex axis in the case of

counter-rotating vortices rotating toward each other is

more symmetric than that of the single embedded vortex,

whose larger induced velocities near the wall are

associated with steeper pressure gradient near the wall.

Comparing Figs. 5.4 and 5.6, one sees that the rate of

radially inward motion when counter-rotating vortices are

embedded as shown in Fig. 5.6 is approximately 7% lower

than that when the single vortex is embedded as shown in

Fig. 5.4. However, the rate of circumferential movement of

counter-rotating vortices is lower than that of the single

embedded vortex, even though the radial location of

counter-rotating vortices is closer to the wall than that

of the single embedded vortex. This is consistent because

the secondary velocity induced by counter vortex acts

oppositely to the direction which is induced on the vortex

core by image vortex.

Fig. 5.7 shows the progression of the counter-rotating

vortices of the same strength that rotate away from each

other as they march down the duct. The left hand side and
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right hand side of Fig. 5.7 are the total-pressure contours

and the secondary velocity profiles, respectively. Fig.

5.7(f) shows that the boundary layer thickness at the lower

wall of the duct is much greater than that at the upper

wall of the duct. This is a contrary result compared with

the case of the counter-rotating vortices of the same

strength that rotate toward each other.

The streamwise trajectories of vortices exhibit the

same behavior as that predicted by the inviscid theory. The

vortices attract each other in a short region downstream of

after the vortex generators, and then they proceed to march

away from the wall. As the two vortices move closer to each

other, the pressure gradient between the vortex center and

the duct wall is increased, but the pressure gradient

between the vortex center and the center of the duct is

decreased. Downstream of station IV (x/D = 8.20), the

pressure gradient between the vortex center and the

symmetric line of two vortices is steeper than that between

the vortex center and the duct wall as shown in Fig. 5.8.

It means that the two vortices move away from each other

during the time they proceed to march away from the wall as

shown in Fig. 5.7.

Fig. 5.7 shows that the predicted vortex location by

two models is overpredicted except in a short region

downstream of the vortex generators. This deviation occurs
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from the weak mechanism of the two simplified models as

previous mentioned. Two prediction models do not have a

mechanism which each vortex tries to settle at a stable

location, i.e., vortex moves to the position of radially

symmetric pressure gradient.

Fig. 5.10 shows the total-pressure contours along the

duct when the co-rotating vortices are embedded; the

secondary velocity profiles are shown in Fig 5.11. The

strength of vortex(A) is twice the strength of vortex(B).

As the vortices march down the duct, the circumferential

movement of vortex(A) is faster than that of vortex(B)

because of its large induced velocity on the vortex core.

This is anticipated by the inviscid theory. The vortex(B)

is collapsed into the vortex(A) at some distance as shown

in Fig. 5.11 because two vortices have the same direction

of vorticity.

Figs. 5.12 and 5.13 are the locations of vortex(A) and

vortex(B) along the duct, respectively. They agree well

with the results by the prediction models in a short region

just after vortex generators. The deviation between the

computational results and the prediction by two models

occurs from the weak mechanism of the two prediction models

as previously mentioned.

The satisfactory results of the computation in the

straight duct with vortex generators suggest that the
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vortex model employed in this work can be applied to solve

the full three-dimensional Navier-Stokes equations. The

internal flow can be controlled by an appropriate

adjustment of the location, strength, lateral spacing, and

number of vortex generators. The computational results

agree well with the results of the prediction models in a

short region just after the location of the vortex

generators, even though we adopted the same constants which

were derived from the experimental results on the external

flow. For the better prediction of vortices along

downstream in the internal flow, an experiment in the duct

with vortex generators is necessary to find the correct

constants.
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Fig. 5.1(a) Computational grid for the vortex interaction

studies within a cylindrical duct, L/D = 20.0

, LLL
I II III IV V VI

x X

station I ( _ = 2.10)
X

station Ii ( _ - 2.SO )
x

station iII ( _ • 4.24)

X

station _ ( _ • 8.20 )

sCa_.ion V ( D = 12.20 )

x
station VT ( ._ - 1G.20 )

Fig. 5.1(b) Measurement stations along the circular

straight duct.
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TOTAL PRESSURE COEFFICIENT CONTOURS

(Single vortex embedded)

(a) station I (x/D = 2.10)

(b) station II (X/D = 2.90)

Fig. 5.2 Total-pressure coefficient oon_ours of the single

embedded vortex.

( Ma = 0.6, Re_ = 1.0xl0 _ )
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/ X,,,
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(c) station III (x/D = 4.24)

(d) station IV (x/D = 8.20)
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(f) station VI (xlD = 16.20)
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SECONDARY VELOCITY VECTORS

(Single vortex embedded)

/
(a) station I (x/D = 2.10)

Fig. 5.3

(b) station II (x/D = 2.90)

Secondary velocity profiles of the single

embedded vortex.

( Ma = 0.6, Re_ = 1.0xl06 )
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(c) station III (x/D = 4.24)

(d) station IV (x/D = 8.20)
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(e) station V (x/D = 12.20)

(f) station VI (x/D = 16.20)
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Fig. 5.4(a] Radial trajectory of the single embedded

vortex.
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Fig. 5.4(b) Angular trajectory of the single embedded
voEtex.
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COUNTER-ROTATING VORTICES

( Downflow pairs )

Total-pressure fcoefficient contours

con¢our decremenc

• 0.05

vortex co:e

location :

I _ --: - 0.S3Z
a

-18 °

strength Of
voz _ex :

F-- :" 0.062
Dr.

_econdary Velocity

_Vectors

._,,,,__. "..."-.._./

(a) station I (xrD = 2.10)

/ : : /

Fig. s.s

(b) station II (X/D = 2.90)

Total-pressure coefficient contours and secondar_

velocity profiles of the counter rotating

vortices of the same strength that rotate toward

each other.

( Ma = 0.6, Re_ = 1.0xl0 6 )
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Secondary Velocity

Vectors

(c) station III (x/D = 4.24)

(d) station IV (X/D = 8.20)
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Total-pressure

coefficient contours

_ Secondary Velocity

ectors

(e) station V (x/D = 12.20)

(f) station VI {x/D = 16.20)
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Fig. 5.6(a) Radial trajectory of the counter rotating

vortices of the same strength that rotate

toward each other.
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COUNTER-ROTATING VORTICES

( Upflow pairs )

Secondary Velocity

Vectors

contour decrement

= 0.05

vortex core

location:

i - £ . 0.B]l
R

- 18 °

sc:engch of

vorcex;
F

-- * 0.062

DU.
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IIII II

veloci cy scale

L

J_ = 0.5
U.

(a) station I (x/D = 2.10)

. o

(b) station II (x/D = 2.90)

Fig. S.7 Total-pressure coefficient contours and secondary

velocity profiles of the counter-rotating

vortices of the same strength that rotate away

from each other.

( Ma = 0.6, Re d = 1.0xl 06 )
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Total-pressure

coefficient contours
Secondary Velocity

Vectors

(c) station III (x/D = 4.24)

!
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(d) station IV (x/D = 8.20)
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(e) station V (x/D = 12.20)

(f) station VI (x/D = 16.20)
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STATIC PRESSURE COEFFICIENT CONTOURS

( Upflow pairs )

vortex co:e location :

k - -: - o.83!
R

=27 °

scIe._ch of vortex :

-- - 0.062
uu.

(a) station III (x/D = 4.24)

Fig °

(b| station I_ (X/D = 8.20)

5.8 Static-pressure coefficient contours of the

counter-rotating vorti¢es of the same strength

that rotate away from each other.

( Ma= 0.6, Re d = 1.0xl06 )
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(c) at (X/D = 10.20)

(d) station V (X/D = 12.20)
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TOTAL PRESSURE COEFFICIENT CONTOURS

( Co-rotating vortices )

(a) station I (x/D = 2.10)

contour dec..emenc = 0.05

vortex(A) core location :

k = _r = 0.831
R
= -27 o

strength of vo:cex (A) :

[" 0.062
z

Du.

vo.._ex (8) cote location :

,1.= -" = o.s3!
R

=27 °

strength of vortex (B) :
F

-- = 0.031
Du.

(b) station II [x/D = 2.90)

Fig. 5.10 Total-pressure coefficient contours when the
co-rotating vortices are embedded. Vortex(A) has

double the strength of vortex (B).

( Ma = 0.6, Rea = 1.0xl06 )
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(c) station Ill (x/D = 4.24)

(d) station IV (x/D = S.20)
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l

1.0

(e) station V (x/D = 12.20)

(f) station Vl (x/D = 16.20)
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SECONDARYVELOCITY VECTORS

( Co-rotating vortices )

(a) station I (x/D = 2.10)

vortex (A) core location :

I = _r = O.S3!
R

9 " -27°

strength of vor_ex (A) :
F

-- • 0.062

DU.

vortex(B) core !ocacion :

i = _z = 0.83!
R

• 27"

s_:eng_h of vor=ex (3) :
F

-- = 0.031
Do.

veloci =y seal e

(b) station II (x/D = 2.90)

Fig. 5.11 Secondary velocity profiles when the

co-rotating vortices are embedded. Vortex(A) has

double _he strength of vortex (B).

( Ma = 0.6, Re_ = 1.0xl0 6 )
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(C) station III (x/D = 4.24)

(d) station IV (x/D = 8.20}
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(e) station V (x/D = 12.20)

(f) station VI {x/D = 16.20)
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Fig. 5.12(a) Radial trajectory of the vortex(A) which has

double the strength of the vortex(B) in the

co-rotating vortices.
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co-rotating vortices.



132

0.8

A --riP,

0,1

0.2

0 , , I = | , h I k , ! . • l . . )

2 5 8 11 14 17 20

.Nornxnlized di._tance along duct (x/D}

Fig.5.13 (a) Radial trajectory of the vortex(B) which has

half the strength of the vortex(A) in the

co-rotating vortices.
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DIFFUSING S-DUCT WITH VORTEX GENERATORS

6.1 Vortex Model

The shed vortex from the vortex generators is modeled

by introducing two-dimensional vortical flow in the cross-

plane. Eq. (5.10) provides this vortical structure.

F [i - exp ( U. r 2_ ___)] (s.10)
u_ 2_r 4vx

F is the vortex strength at the tip of the vortex

generator. The F term is a function of the geometry of the

generator, and the oncoming flow conditions. F is defined

by the strength of one fully rolled up trailing vortex;

C&
r --c_--c_u (6.1)

--2

where c u is the lift coefficient, cI is the chord length of

the vortex generator, u is the velocity of the flow at the

generator tip, and C a is the constant which considers the

viscosity and turbulence effect, etc.,. Ca cannot be greater

than 0.45 according to inviscid wing theory and by

experiment.

133
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Three pairs of one half of the NACA0012 wing section

were used as the vortex generators in the Vakili et

al. (1986) experiment. They were installed in the duct at

S/D_ = 0.087, and at azimuthal angles of -41.4 = , 0.0 ° and

+41.4. The height and chord length of the vortex generator

were h/D i = 0.715xi0 t and ct/D i = 0.108, respectively. The

vortex generator pairs had geometric incidence angles of

+14 ° and -14 ° relative to the duct centerplane.

Eq. (6.1) can be expressed in nondimensional form;

F cL cj u
- c= (6.2)

D i U. 2 D i U.

From the experimental conditions, u/U= is taken as 1 and c L

is assigned as 1.4 because the incident angle of the vortex

generator is 14 ° . In this study, six different vortex

strengths F/DiU _ = 0.005, 0.010, 0.015, 0.020, 0.025 and

0.030 are investigated to compare with the experimental

data and to study the parametric effect of different vortex

strengths. When the vortex strength(F/DiU=) is equal to

0.030, C= is 0.4. In the choice of various vortex strength,

the decreasing of the vortex strength implies that the

incident angle of the mounted vortex generator is

decreasing.

In Eq. (5.10), the length x is estimated to be the



135

distance 0.087D; from the location of the vortex generator

to the crossplane of the vortical structure. The rotational

velocities at the cross plane (S/D i = 0.17) are evaluated

with the image vortices based on the circle theorem

mentioned in section 4.2.1. If the rotational velocity near

the vortex core is greater than U_/5, the velocity at that

point is assumed to be of that magnitude. These secondary

velocities of the vortex model are added to the secondary

velocities without vortex generator at the same plane. The

combined vortical structures are applied as the source term

in the crossplane. Fig. 6.1 shows the secondary flow

structure at this plane.

In this computation, the residuals for these numerical

solutions were reduced approximately three orders of

magnitude. Solutions were obtained on the Cray-YMP. The

number of iterations required to obtain the converged

solutions were approximately 25,000. The computational

speed was 950 iterations per CPU hour. The mass flow

changes between the inlet and exit was within 1 percent.

6.2 Results and Discussion

Fig. 6.2 shows values of the computed static-pressure

coefficients (continuous curves in the figure) and
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experimental values (symbols) at _ = i0 °, 90 ° and 170 ° for

various vortex strengths. Numerical results with F/DiU _ =

0.025 are close to the experimental data. In the following

discussion, these numerical results will be compared with

the experimental results obtained by Vakili et ai.(1986).

The surface static-pressure distribution at _ = 170 ° shows

some deviation between the experimental and numerical

results near the location of the vortex generators. Recent

experimental results on the same geometry by Reichert and

Wendt(1992) show that there is no perceptible upstream

influence on the static-pressure distribution, caused by

the vortex generator arrays. In their experiment, Wheeler

wishbone generators are used. This type of generator forms

a pair of counter-rotating vortices with the flow between

vortices directed upwards. However, the experimental data

obtained by Vakili et ai.(1986) show some influence on the

static-pressure distribution by the vortex generator

arrays. The influence of the vortex generator arrays on the

static-pressure distribution depends on the location of the

vortex generators and data acquisition points, but the

vortex model employed in this study shows very little

upstream influence on the static-pressure distribution, as

can be seen in Fig. 6.3.

For the smallest vortex strength (F/DiU _ = 0.005), the
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results differ only marginally from the flow without vortex

generators as shown in Fig. 6.3(a). Figs. 6.3(b) and 6.3(c)

show higher values of static-pressure for the larger vortex

strength in the second half bend of the duct. The static-

pressure distribution lines cross each other at the

inflection point of the duct (S/D i = 2.62). The static-

pressure value at the cross point is less than the peak

value at _ = 0 ° near S/D i = 2.5. These results are very

similar to the experimental results conducted by Reichert

and Wendt(1992).

In Figs. 6.3(a) and 6.3(b), the constant static-

pressure values at _ = 170 ° in 3 < S/D i < 4 are associated

with the flow separation. These figures show that the

region of the constant static-pressure value decreases with

increasing the vortex strength. The reverse flow of

streamwise velocity dose not occur when the injected vortex

strength is greater than F/DIU . = 0.020.

Fig. 6.4 shows the secondary velocity profiles

compared with the experimental results. The computed and

experimental results show on the right hand side and left

hand side, respectively; only half of the cross-plane is

shown because the flow is symmetric along the duct cross

section. The numerical results agree closely with the

experimental results except the behavior of the vortices(C)



138

along the downstream. Note that the resolution and the

locations of data collection points of the experiment and

computations are different. The computational results of

Fig. 6.4(a) are plotted in a denser resolution in order to

show more clearly the vortices just downstream of the

vortex generators.

At the first half bend, the high energy flow moves

toward the upper wall and the low energy flow migrates

circumferentially from the upper wall to the lower wall. In

Fig. 6.1, the rotational velocities of the injected

vortices(B) have the same direction as the low energy flow

near the wall, but vortices(A) and (C) have opposite

rotational velocities to the low energy flow. This makes

the secondary velocities of vortices(B) results in stronger

than those of the other vortices. It also makes vortices(C)

more quickly decaying. In the experimental results, the

vortices(C) do not decay as quickly as in the computation;

even if the strength of vortices(C) is weaker than the

other vortices. The low energy flow at the vortex plane is

retarded by the installed vortex generators on the wall.

This means the injected vortices have little influence from

the low energy flow. The vortical structure of the vortex

model is strongly influenced by the low energy flow at the

location of the vortex generators.

Fig. 6.5 shows the total-pressure contours compared
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with the experimental results. The small effect of the

vortices(C) is clearly shown in this figure. The thickness

of the computed "boundary layer" at _ = 90 ° is less than

observed experimentally.

The static-pressure contours are shown in Fig 6.6. The

numerical results agree qualitatively with the experimental

results. In the first half bend, higher static pressure is

shown near the upper wall because of the duct curvature.

Opposite behavior is shown in the second half bend owing to

the same reason.

The variation of the boundary layer thickness at _ =

I0 °, 90 ° and 170 ° along the duct is shown in Fig. 6.7. The

boundary layer thickness is defined as the normal distance

from the wall where the total-pressure coefficient is 1.0.

The boundary layer thickness of the flow with vortex

generators depends greatly on the vortex strength. The

computed boundary layer thickness at _ = 90 ° is less than

the experimental result because the injected vortices(C)

are weaker than the experimental values. However, the

computed results show that the trend of the boundary layer

thickness variation along the duct is quite similar to the

experimental results.

Fig. 6.8 shows the total-pressure contours with and

without vortex generators. The right hand side and left

hand side show the numerical results with and without
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deficiencies

acquisition

pressure measurements using pitot tubes.
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vortex generators, respectively. The effect of the injected

vortices is clearly shown in this figure. The injected

vortices push the high energy flow toward the lower energy

region. This resulting force prevents the flow separation

at the inflection point of the duct.

Fig. 6.8(a) to (c) show that the boundary layer

thickness of the flow with vortex generators near the upper

wall is less than that of the flow without vortex

generators. This results from satisfying a constant mass

flux because the shed vortices injected near the lower wall

cause a streamwise velocity deficit in the region of the

vortex core. However, the experimental results do not show

any difference between the boundary layer thicknesses with

and without vortex generators in the upper wall of the

of the duct. This probably results from

in the experiments, primarily coarse data

locations and uncertainties in the total

Fig. 6.9 shows the secondary velocity profiles with

and without vortex generators. The interaction between the

injected vortices and the counter-rotating vortices

resulting from the flow separation is clearly shown in this

figure. The injected vortices suppress the growth of these

counter-rotating vortices.

The static-pressure contours with and without vortex



141

generators are shown in Fig. 6.10. At the vortical plane

(S/D i = 0.17), the distortion of the constant static-

pressure contours is a result of the injected vortices. The

change of the static-pressure along the duct shows the same

flow phenomena as mentioned in the discussion of the flow

without vortex generators. Figs. 6.10(d) and 6.10(e) show

that the constant static-pressure contours are flatter in

the low energy flow region of the second half bend. The

injected vortices result in a more uniform flow and higher

diffusion at the exit than occurs without vortices.

Figs. 6.11 and 6.12 show the numerical results with

the vortex strength (F/DIU . = 0.015). The computed results

show that the effect of the injected vortices is weaker

than with the strong vortex strength (F/D_U. = 0.025), as

one could expect. The region of diminished total-pressure

at the exit is larger and the static-pressure contours are

more distorted. Fig. 6.12 shows the interaction between the

injected vortices and the counter-rotating vortices

resulting from the flow separation. It also shows that the

growth of these counter-rotating vortices are suppressed by

the injected vortices. Fig. 6.12(e) shows that the

secondary velocities between the vortices(A) are

overestimated. This results from the small eddy viscosity

in the flow separation region as mentioned in the
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discussion of the flow without vortex generator.

Fig. 6.13 shows the total-pressure contours at the

exit with different vortex strengths. The region of

diminished total-pressure is significantly reduced with

increasing the vortex strength.

A total-pressure recovery (C_ is calculated using

area weighted values from the computational mesh over the

cross stream plane.

A
(6.])

Using a similar method, the total-pressure recovery of a

segment is determined by integrating the total-pressure

coefficient over a segment of the cross stream plane of

angular extent _.

/'c; dA
_o(_) : ° (6.4)

" dA

A distortion coefficient is useful to describe the

efficiency of inlet duct or to compare the performance of

several inlet ducts. There are many ways to define the

distortion coefficient depending on the comparison

purposes. Distortion coefficients measuring radial or

circumferential distortion have been used. Early workers
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simply defined the distortion coefficient in experiment to

be the difference of the normalized maximum rake total-

pressure and the normalized minimum rake total-pressure. In

this study, the distortion coefficient DC(_) is defined

using the cross stream plane segment that results in the

lowest value of C_(_). In case of S-duct, the segment angle

is defined to the azimuthal angle from the centerline in

the lower energy region. The values of 9 are chosen to 60° ,

90 ° and 120 °

Fig. 6.14 show the total-pressure recovery at the exit

with various vortex strengths. Fig. 6.15 show the

distortion coefficient at the exit. For the smallest vortex

strength (F/DiU _ = 0.005), the total-pressure recovery is

slightly reduced. This indicates that the small vortex

strength acts as flow blockage at the location of the

vortex generators. The vortex strength is quickly reduced

in the first half bend. The resulting force is not enough

to suppress the counter-rotating vortices resulting from

the flow separation. Small vortex strength is seen to

affect the flow in a detrimental way. This phenomenon with

small vortex strength is shown in the experiment by

Reichert and Wendt(1992). The total-pressure recovery and
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coefficient significantly

vortex strength.

improved with
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Fig. 6.1(a) Secondary flow structure from vortex generator

model at S/D_ = 0.17

X = r/R = 0.858

cp = 41.4 °

Fig. 6.1(b) Location of injected vortices at S/_ = 0.17
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Fig. 6.2(c) Axial surface-static pressure coefficient.

Cp, = (Pl.._ - P,_)/q_-r
( Ma = 0.6, Re d = 1.76x10 _, F/D;U= = 0.030 )

Exp. Vakili et al. (1986)
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SECONDARYVELOCITY VECTORS

( Vortex strength, F/D_U. = 0.025 )

_p_._ / \ _ _,_o.

i i s t l ¢1

, ' , • / i 1II

I_ ......... . .'.;: .'.. , ",,,
....... -.,...)": : : . ........... t

k_,,, .... .,-".-" ,,,,.W7, ..... :: ::".."-."
- , :, ...:.-_-,, '.

' ".- \/!(/,.-_-,,',__ .'_
, _J t v ./ k.:_--G"._Ml"" '"' o.2

(a) at S/D i = 1.31

.,r;_\lt_,,_.'.',ii_i__ ""'_:''''''_

Vel. scale

I_I
-- -0.2

(b) at S/_ = 2.62

Fig. 6.4 Secondary velocity profiles with vortex

generators.

( Ma = 0.6, Re a = 1.76x!0 _, F/DiU= = 0.025 )

Exp. Vakili et ai.(1986)
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TOTAL PRESSURE COEFFICIENT CONTOURS

( Vortex strength, F/D_U. = 0.025 )

EXPERIMENT COMPUTATION

,1.OS
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1.05
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(a) at S/Di = 1.31
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1.00

0.7 "- \ 0.7
\

0.6 0.6

(_) at S/% = 2.62

Pig. 6.5 Total-pressure coefficient contours with vortex
generators.

( Ma = 0.6, Re,, = 1.76x106, F/_U, = 0.025 )
Exp. Vakili et al. (1986)
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STATIC PRESSURE COEFFICIENT CONTOURS

( Vortex strength, F/D;U_ = 0.025 )

_OMPUTATION
EXPERIMENT /_

IY 0 05

(a) at S/D; = 1.31

(_) at s/_ = 2.62

Fig. 6.6 Static-pressure coefficient contours with

vortex qenerators.

( Ma = 0.6, Re_ = 1.76xi06, F/_U. = 0.025 )

Exp. Vakili et ai.(1986)
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Fig. 6.7 Boundary layer thickness.

( Ma = 0.6, Re,, = 1.76xi06, F/D_U, = 0.025 )

Exp. Vakili et al. (1986)
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TOTAL PRESSURE COEFFICIENT CONTOURS

With Vortex

Generators

F/D;U= = 0.025

1.05

1.00

Without Vortex

nerators
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1._

(a) at S/D_ = 0.17

Fig. 6.8
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0.gG

0._

0.6
0.4 0_

(b) at S/I_L = 1.31

Comparison of the total-pressure coefficient

contours with/without vortex generators.

( Ma = 0.6, Re_i = 1.76xI0 _, F/_U. = 0.025 )

Exp. Vakili et al. (1986)
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SECONDARY VELOCITY VECTORS

11 .--........

ithout Vortex

enerators

(a) at S/D_ = 0.17

(_) at s/D, = 1.31

Fig. 6.9 Comparison of the secondary velocity profiles

with/without vortex generators.

( Ma = 0.6, Recj = !.76xI0 _, F/_U, = 0.025 )

Exp. Vakili e= al. (1986)
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STATIC PRESSURE COEFFICIENT CONTOURS

With Vortex

Generators

F/D;U_ = 0.025

_" _Without Vortex

Generators

( 00

(a) at S/D i = 0.17

__ o.15

o.I, 0.07 1

0.03

-0.01

0.17. ___
0.0'_

0.04

(b) at S/_ = m.31

Fig. 6.10 Comparison of the static-pressure coefficient

contours with/without vortex generators.

( Ma = 0.6, Re d : !.76xi06, F/D_U. = 0.Q25 )
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TOTAL AND STATIC PRESSURE COEFFICIENT CONTOURS

( Vortex strength, F/D_U. = 0.015 ]

Total-pressure

coefficient

contours

Static-pressure
coefficient

0.02_ contours

-0.01

-0.04

0.7

(

-0.07

(a) at S/D i = 0.17

Fig.

03

(b) at S/_, = 1.31

6.11 Total- and static-pressure coefficient contours

with vortex generators.

( Ma = 0.6, Re_ = 1.76xi 0_, F/_,U. = 0.015 )
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SECONDARY VELOCITY VECTORS

( Vortex strength, F/D_U_ = 0.015 )

(a) at S/D_ = 0.17

o°"_

0 • • .°"_

p_,.°,o • • ". • • .' • • • •

• , • • . • • ." / • • ./• • ................

,"...... .-i i.-.,i.::::...::..::.:"...t..tl."-.......

(_) at S/D, = 1.31

Fig. 6.12 Secondary velocity profiles with vortex

generators.

( Ma = 0.6, Re d = !.76xI06, F/I_,U. = 0.015 )
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(c) at S/D_ = 2.62

(d) at S/D; = 3.93
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TOTAL PRESSURE COEFFICIENT CONTOURS

With vortex

Generators
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(a)

Without Vortex

Generators
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_ I'0_90

.
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Fig.

(]_) r/_,u. = o.ols

6.13 Total-pressure coefficient contours at the

exit (S/D; = 5.24) of S-duct for variation of

vortex strength
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Fig. 6.14 Effect of vortex strength on the total-pressure

recovery at the exit (S/D, = 5.24) of S-duct.
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Fig. 6.15 Effect of vortex strength on the distortion

coefficient at the exit (S/D_ = 5.24) of S-duct.



CHAPTER 7

CONCLUSION AND RECOMMENDATION

The numerical results on a diffusing S-duct without

vortex generators show the phenomena of three-dimensional

flow separation. The computed results agree well with the

experimental results except in the flow separation region.

Downstream of flow separation, the strength of the

streamwise velocity deficit (U_ - u) is overestimated at

the region of the counter-rotating vortices resulting from

the flow separation. This results from underestimating the

eddy viscosity effect in the flow separation region by the

turbulence model. However, the computed results are better

than the previously published work obtained by Harloff et

al.(1992b) with an alternative turbulence model. In order

to obtain better solutions in the flow separation region,

further efforts on three-dimensional turbulence modeling

are necessary.

The computed results on a straight duct with vortex

generators show how the injected vortices decay, move along

the duct, and interact with the boundary layer in a simple

geometry. For a short region (approximately three times

diameter) downstream of the vortex generators, the vortex

178
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core locations determined from the simplified model and by

the full computations are in good agreement. Farther

downstream, however, the simplified model is not able to

predict the radially inward motion. In order to provide

more accurate vortical structure for the vortex generator

model, experiments with vortex generators in straight ducts

would be useful.

The computed results on a diffusing S-duct with vortex

generators show the interaction between the separated flow

and the injected vortices. As the strength of the vortex

generators increases, the extent of flow separation region

is decreased. When the strength of the injected vortex is

greater than F/DiU_ = 0.020, reverse flow along the

streamwise direction does not occur.

The computed results depict well the behavior of the

injected vortices as they travel downstream except for the

injected vortices that are introduced into the region with

strong secondary velocity induced by the curvature of the

duct. The behavior of the injected vortices along the

streamwise direction depends on the induced secondary

velocity and the injected location within the duct, even if

the vortices are injected with the same strength.

Experiments are needed to obtain the secondary velocity

just downstream of the vortex generators in order to obtain
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an accurate vortical structure for modeling the shed

vortices in the curved duct.

The total-pressure recovery increases and the

distortion coefficients decrease at the exit with

increasing vortex strength, except for the smallest vortex

strength (F/D,U_ = 0.005). This indicates that there exists

an optimal vortex strength which will minimize the flow

distortion at the exit. In order to obtain the optimum flow

at the exit, additional numerical studies are necessary

with various axial locations, lateral spacing, height, and

number of vortex generators.
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APPENDIX A

The Elements of Jacobian Matrices

a_

a0

o. a_ a_ a_ o.
ax ay az

a_
a_: an an a3_ (7-i)_

a_

'_s_ asz '_s3 '_s_ ass

^ a_ _._
a_3 = u_ - (_-I) ax

^ a_ _ (7-I) w a_
a_ : u a-_

a_ a_
_: --v_ - (_-_) u_

a_ a_ a_ a_
a33 = ( u -_ + 2 v-- + Woy_-_ ) -(7-1) V--ay
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^ aC _ (y-!) w @_
a_°= v a-_

a,_ = -w ( u _ _-v.._y + w..._.._) + ( y - l ) q._.-_

- a-_ (-y-l) u--az

_3 = wa-/_ - (y-l) v @{
ay a_

a_ = ( u._x. v._z +2 w-_ ) - (y -! ) w a___az

- a_ a_ a_ p
%1=-(uTx+v_+w_z) (e+--(y-a)4)

P

= a_ a_ +wa_) _-(e+2) a_{
as= -<y-l) u ( u__x + v_._y _ p ax

^ = a_ a_ a_ ; a_
%3 -(y-z) v(u-E._.v._._y+w__z)+(e._)_

p ay

as,"= -(y-!> a_ _a_ a_ p a_
w ( U "_x + V _n,+ w _-_z)_y÷ ( e *. -- ) __

p az

w

where q = (u2 + vp" + w_)/2

The elements of B and C are

only _ in the element of ._ has

respectively.

similar to those of A,

to replace to _ and _,



APPENDIX B

Vortex Trajectory In a Tube Using the Image Vortex System

In order to form a simple model which estimates the

trajectory of a vortex in a tube, the two-dimensional

problem of the motion of an infinite line vortex in a

circular cylinder is considered, and then superpose an

axial velocity to describe the motion of a traveling vortex

in a circular cylinder.

Consider first the inviscid model. Fig. B.I is a

diagram of the vortex in a tube with an image vortex, k =

r/R is the non-dimensional radial location of the vortex.

Also note that the image flow must have a superposed

circulation. This plays no role in the following

discussion. The internal vortex moves with the velocity

induced by the image vortex:

F 1

u9 - 2_R ! -i 2 (B.1)

The angular velocity of the vortex motion is u,/kR. Thus:

F 1
- (B.2)

2_R 2 1-I 2

NOW consider a decaying vorzex. The analytic solution for

a decaying vortex at the origin, with laminar flow is:
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F [l-exo ( -U'r2_ )] (B.3)
u8 - 2_r 4vx

For the axially-moving vortex, the time is the particle

travel time for axial motion:

x
C = -- (B.4)

u.

The azimuthal velocity is then given by:

F [ ! -ex_ ( r2. -__ ) ] (B.S)
ue - 2_r 4v c

If identically decaying vortices are employed in the image

system, the tube boundary is no longer a streamline.

However, the image system remains valid using a simple

approximation to the flow field described by Eq. (B.5). The

decaying vortex has a finite velocity slope at r = 0, and

behaves like an inviscid vortex as r - _. It can therefore

be approximated as an inviscid vortex with a solid body

core. The radius of the core is the value where the solid

body velocity and the vortex velocity are equal. The core

radius for a vortex at the origin is:

!

= 2 v_-_= = 2.1 vx
-c _ U.

(B.6)
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For a vortex whose center is at XR, the

location of the solid body core is given by:

outer radial

i
= IR * 2.1 vxrm

u.

x/R
- a i + 2 U.a/v

(B.7)

The core reaches the wall of the tube where r, = R. This

occurs at an axial location given by:

x) _ I U.R (I - 1_ )2 (B.8)-R= 4 V

For x/R S (x/R)., the azimuthal velocity and angular

velocity of the vortex are given by the first factors in

Eq. (B.5):

F i

ue - 2_R (I - 12) (B.9)

F 1
= (B.10)

2r_R 2 (i - i 2 )

To this point the model gives no information about the

radial migration of the vortex. We now use the growth of

the solid body core to obtain an estimate, albeit weak, of

the migration of the vortex center toward the tube center.

If we think of the core as a solid body, then continued

growth of the core beyond x = xa forces migration of the

vortex toward the tube center. Then Eq. (B.8) gives the
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radial location of the center of the vortex for any x > x=,

and Eqs. (B.9) and (B.10) give the corresponding azimuthal

and angular velocities. A convenient measure is the angle

of travel of the vortex:

8 = _dc - F x. dx ÷

2 n R 2 0". ! - 12_ . 1 - ][2 (B.II)

- + (B. 12)
R 2 2 122K 67. ! - l_ x. 1 -

In the integral in Eq. (B.12), if Eq. (B.8) holds without

the subscript "e", one then obtains:

I 4x/R _ /-6i - i = U.R/v
(B.13)

Eq. (B.12) then becomes

e _

F X= 1 U-R_
÷

4 v

Performing the integration yields:

a do ]o._-6 (2 -_-6)

(B.14)

F xa

2_a2u. I - _

I u-R2
+

2 v f-i/<
in 2

! - -_"_

(B.ZS)

But
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and

_=l-l_
(B.16)

1 U- R2 ( 1 - l_) 2 (B.17)
X_ 4 V

Therefore:

SKY ! + l= - 2!n 1 ÷ l_
(B.ZS)

I =I -/_
(B. 13a)

x/R_'_ = 2 U.R/v
(B. 13b)

Eqs • (B.18) , (B.13a) and (B.13b) hold in the range:

(I- l=) 2 _ a _ ! (B.Zg)

For a < ( 1 - k_ ) :, k = k_ and the azimuthal angular travel

is given by:

l_x
0 = (B.20)

2_R2U.(! - 12)

An alternative measure of the azimuthal travel is the

tangent of the helix angle. This is obtained by merely re-

writing Eqs. (B.18) and (B.20):
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8R
x F I[ ! -la2_RU. a ! ÷ l=

(B.21)

8R P

x 2_RU. (I - 12 )
(B.22)

where Eqs. (B.21) and (B.22) are valid in the large a and

small _ ranges, respectively.
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Fig. B.1 When a single vortex of strength F is located

inside the circular cylinder, image vortex is

located on the line connecting the center of a

circular cylinder and a single vortex.



APPENDIX C

Vortex Trajectory In a Tube Using the Vortex Interaction

Model

Circulation decay of vortex in the turbulent flow is

faster than in the laminar flow because of a large eddy

viscosity. Circulation decay on the previous model is very

slow because only kinematic viscosity is used. In this

model, the wall effects and proximity effects are

considered to predict circulation decay of the vortex in

the tube. At first, circulation decay by the wall effects

is considered. Fig. C.I is a diagram when a vortex is

embedded at some crossplane location x. The secondary flows

produced by the injected vortex give rise to a

corresponding circumferential component of the wall shear

stress (T_). In turn, this stress results in a torque

opposing the rotation of the vortex. The moment M i opposing

the rotation of vortex i can be obtain by integrating the

magnitude of the elemental torque:

_ 2 ( :,ifldSd x f> (c.i)Mi - d C

where 151 is the distance from the center of vortex to the

195
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wall, and H i is the angular momentum of vortex i of

elemental thickness dx.

Assuming proportionality between the vortex angular

momentum and its circulation, we obtain the streamwise

circulation gradient:

dr l Ided x C_: p U. re ,
(C.2)

where C,V is the unknown constant of proportionality with

units of m 2.

r_ is a function of wall coordinates, i.e., r_ =

r_(r, 8) and it is proportional to the circumferential

component of the secondary velocity a< the wall. To

simplify this expression, the correlation suggested by

Pauley and Eaton(1988) is adopted.

where uo(8,r = I_t) is the circumferential velocity with

image vortex at the wall. z_ is the wall shear stress of

the corresponding two dimensional boundary layers and C, is

a scaling factor with units of sec/m;

p. U_ p. U2 -!
( 0.3164Re d 4) (C.4)2D - 2 C: - 2

Re_ is a Reynolds number based on the duct diameter.
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Substitute Eqs. (C.3) and (C.4) into (C.2), and then we

obtain the circulation gradient along the streamwise

direction by the wall effects;

_ C.U.dr"I_:
d x C.,_:

!

(0 !582,_e_7)f02_Ifl 2cos (_) d0
(c.5)

where _ is an intersectional angle between the r-direction

and the P-direction.

When the multiple vortices are embedded in a

crossplane, the vortices interact both because of their

induced field and through diffusion. Fig. C.2 is a diagram

of two counter-rotating vortex cores in close proximity.

The circulation decay by proximity effect can be expressed:

dF Ip:ox = C F I--:-:_Ide (C.6)
d_ ;:°" Irl • a_-:"0

where _r= is the unknown constant of proportionality with

units of m 2, and the sign of _,= depends on the rotation

direction of the neighboring vortex.

Total circulation decay is written:

dr' _ dr' I,,, * dr' I,,,o..
dx dx dx

(c.7)

With this gradient and an assumption that the embedded

vortices move axially at the free streamwise velocity, we
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can track the streamwise displacement of the embedded

vortex step by step

r (x+_x) = r(x) . _x(
at(x)

ax
) (c.8)

O (x. Ax) = O (x) . Ax (
aS(x)

0x
) (c.9)

P(x+ax) =P(x) ÷ Ax(
OF(x)

Ox
) (c.i0)

As noted early, the same constants C_ (l.40x104 m2),

_,= (l.40x10 _ m _) and C (0.046 sec/m), which were derived

from the experimental result on the flat plate, are adopted

to predict the circulation decay in the internal flow.
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\

Fig. C. Z The secondary flow field generated by vortex i

gives rise to a local circumferential component

of wall shear stress T_, which opposes the

rotation of vortex i.
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Fig. C.2 Two neighbor vortices in a circular duct for

evaluating proximity circulation losses. The r

represents the coordinate axis along the line

connecting adjacent cores, and r o is the location

on r where the vorticity change s sign in the

model.
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